Compressor type engine brake


Cite item

Full Text

Abstract

The accident rate in road transport remains unacceptably high, and in order to reduce it, it is necessary to take into account all the factors affecting this process. In this regard, the process of long-term braking deserves special attention, which negative processes require the creation of additional braking systems (retarder brakes) for vehicles operating in mountainous areas, primarily in the field of passenger transportation. Transmission retarder brakes that provide sufficient braking performance have a number of disadvantages that inhibit their use. Existing engine retarder brakes provide insufficient deceleration, and studies were carried out at the Kuban State Agrarian University (KubSAU) to improve their efficiency. After a theoretical analysis, the compressor brake mode was experimentally investigated. The increased pressure was created in the intake manifold and at the end of the compression stroke, air from the cylinder was released through a special valve back into the system, due to which the braking effect was created. The carried out experiments confirmed the possibility of a significant increase in the engine braking torque in the compressor brake mode, when both valves are closed - the exhaust after the exhaust manifold and the intake in front of the carburetor, and compressed air is supplied to the intake manifold at different pressures. Then the braking torque increases in comparison with engine braking by more than 3 times.

About the authors

V. V Verbitskiy

Kuban State Agrarian University n.a. Ivan T. Trubilin

PhD in Engineering Krasnodar, Russia

V. M Pogosyan

Kuban State Agrarian University n.a. Ivan T. Trubilin

Email: pogosyn@gmail.com
PhD in Engineering Krasnodar, Russia

References

  1. Калимулин М.Р. Анализ процесса формирования технического облика особо легких высокоподвижных колесных транспортных средств для горных условий эксплуатации. МГТУ им. Баумана. Эл. № Ф.С. 77-48211.
  2. Мажитов Б.Ж. Методы снижения токсичности отработавших газов дизеля и теплонапряженности тормозной системы автомобилей при эксплуатации в горных условиях. Автореферат дисс. канд. техн. наук. С-Петербург. 2011.
  3. Knechtges H. Mit jeder Stufe steigt Lohnunternehmen ATZ, 2014, 69, № 6.
  4. Кабанин П.А. и др. Определение рациональной конфигурации тормозной системы для трехосного полноприводного автомобиля сельскохозяйственного назначения. «Технология колесных и гусеничных машин». 2012, № 2. С. 43-49, 62,64.
  5. Stahn Charles R. Automobile construction and operation. Toronto-London-Madrid-Paris: Mc Graw-Hill Ryerson Limited, 1993.
  6. Электронная тормозная система грузовых автомобилей // Автостроение за рубежом, 2001. № 9. С. 27-33.
  7. Martin Martin Julian. Frenos de disco. Ferrocarriles у tranvias, 1969, 33, N 380, p. 119-126.
  8. Христофоров Е.Н., Сакович Н.Е., Тюриков Б.Н. Тормозной механизм для мобильных средств // Тракторы и сельскохозяйственные машины. 2006. № 9. С. 40-41.
  9. Мамити Г.И. Тормозной механизм барабанного типа с самоустанавливающимися колодками // Вестник машиностроения. 2009. № 11. С. 89-92.
  10. Nazarov A. Reduce speed wear counterbodies drum brakes mounted on the front axis two-axle vehicle // А. Nazarov, V. Nazarov / Вестник Харьковского национального автомобильно-дорожного университета. 2016. № 75. С. 89-94

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Verbitskiy V.V., Pogosyan V.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).