The technological aspects of the development and production of microtablets (literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents the specifics of the development and production of microtablets in experiment. Microtablets, or mini-tablets, are tablets with a diameter of 1 to 4 millimeters. Tablets up to 4 mm in diameter are rarely distinguished as a separate type in the regulatory documentation. However, they have a number of advantages. The small size of individual particles allows the usage of microtablets in cases of violation of the swallowing process. The great variability in dosing allows in theory the use of this form in personalized medicine. With the help of microtablets it is possible to achieve a reliable physical separation of active pharmaceutical ingredients in combined preparations. However, their dimensions also require attention to the technological process.

The small size of the matrix orifices affects the requirements for the physical and technological properties of the tableting mass and for the settings of the tablet press, necessary to achieve mass uniformity and dosing of this type of tablets. For small orifices in the tablet press matrix, the effect of powder suction due to the movement of the lower punch plays an important role, depending on the fractional composition of the tableting mass and the speed of rotation of the press rotor.

Also, the production process involves the use of specialized tooling of various types of design for a tablet press.

Microtablets, like tablets of regular diameter, can provide modified release of drugs, however, due to their size, both their technology and dissolution in the organism must be taken into account. The article also mentions the features of quality control of tablets of this type, and critically important technological parameters.

About the authors

Andrey S/ Svetozarov

Lomonosov Moscow State University

Author for correspondence.
Email: andrejsvetozarov@gmail.com
ORCID iD: 0000-0002-1715-3922

attached for scientific activities, Training and Manufacturing Section of regenerative medicine Institute of Medical Research and Educational Center

Russian Federation, Lomonosovsky Ave., 27 b. 10, Moscow, 119192

Rimma A. Abramovich

Lomonosov Moscow State University

Email: abr-rimma@yandex.ru
ORCID iD: 0000-0003-1784-881X

Ph.D. (Pharm.), Dr. Habil. Professor of dosage forms technology Сhair, Head of Training and Manufacturing Section of regenerative medicine Institute of Medical Research and Educational Center

Russian Federation, Lomonosovsky Ave., 27 b. 10, Moscow, 119192

Aleksandr N. Vorobyev

Lomonosov Moscow State University

Email: alek_san2007@mail.ru
ORCID iD: 0000-0002-7182-9911

Ph.D. (Pharm.), Head of pharmaceutical technology Laboratory of Training and Manufacturing Section of regenerative medicine Institute of Medical Research and Educational Center, PhD of Pharmaceutical Sciences

Russian Federation, Lomonosovsky Ave., 27 b. 10, Moscow, 119192

Olga G. Potanina

Lomonosov Moscow State University

Email: microly@mail.ru
ORCID iD: 0000-0002-0284-419X

Ph.D. (Pharm.), Dr. Habil. Professor of Pharmaceutical Chemistry, Pharmacognosy and Pharmacy Managment Сhair, Head of Analytical Laboratory Training and Manufacturing Section of regenerative medicine Institute of Medical Research and Educational Center

Russian Federation, Lomonosovsky Ave., 27 b. 10, Moscow, 119192

References

  1. Aleksovski A., Dreu R., Gašperlin M., Planinšek O. Mini-tablets: a contemporary system for oral drug delivery in targeted patient groups. Expert Opinion on Drug Delivery. 2015; 12 (1): 65–84.
  2. Camblin M., Berger B., Haschke M., Krähenbühl S., Huwyler J., Puchkov M. CombiCap: A novel drug formulation for the basel phenotyping cocktail. International J. of Pharmaceutics. 2016; 512 (1): 253–61.
  3. Suenderhauf C., Berger B., Puchkov M., Schmid Y., Müller S., Huwyler J., Haschke M., Krähenbühl S., Duthaler U. Pharmacokinetics and phenotyping properties of the Basel phenotyping cocktail combination capsule in healthy male adults. British J. of Clinical Pharmacology. 2020; 86 (2): 352–61.
  4. Minitabs™ – Flexible Dosage Forms | Adare Pharma Solutions. Доступно на: https://adarepharmasolutions.com/technologies/minitabs/ [дата обращения: 15.06.2023].
  5. Minitablets: Manufacturing, Characterization Methods, and Future Opportunities | American Pharmaceutical Review – The Review of American Pharmaceutical Business & Technology. Доступно на: https://www.americanpharmaceuticalreview.com/Featured-Articles/190921-Minitablets-Manufacturing-Characterization-Methods-and-Future-Opportunities/ [дата обращения: 27.05.2023].
  6. Sirisha B., Swathi P., Abbulu K. A Review on Pharmaceutical Mini-Tablets. 2018; 8 (9).
  7. Lura A., Breitkreutz J. Manufacturing of mini-tablets. Focus and impact of the tooling systems. J. of Drug Delivery Science and Technology. 2022; 72: 103357.
  8. Пресс-инструмент для таблеточных прессов. Доступно на: http://transmedteh.com/products/press-tool/ [дата обращения: 27.05.2023]. [Press tool for tablet presses. Access mode: http://transmedteh.com/products/press-tool/ [Accessed: 27.05.2023] (in Russian)]
  9. Ilhan E., Ugurlu T., Kerimoglu O., Ilhan E., Ugurlu T., Kerimoglu O. Mini Tablets: A Short Review-Revision. Open J. of Chemistry. 2017; 3 (1): 12–22.
  10. Lura A., Tardy G., Kleinebudde P., Breitkreutz J. Tableting of mini-tablets in comparison with conventionally sized tablets: A comparison of tableting properties and tablet dimensions. International J. of Pharmaceutics: X. Tableting of mini-tablets in comparison with conventionally sized tablets. 2020; 2: 100061.
  11. Goh, Hui Ping et al. The Effects of Feed Frame Parameters and Turret Speed on Mini-Tablet Compression. J. of Pharmaceutical Sciences. 108 (3): 1161–71.
  12. Kurashima H., Uchida S., Kashiwagura Y., Tanaka S., Namiki N. Evaluation of Weight Variation in Mini-Tablets Manufactured by a Multiple-Tip Tool. Chemical & Pharmaceutical Bulletin. 2020; 68 (10): 981–8.
  13. Flemming J., Mielck J.B. Requirements for the Production of Microtablets: Suitability of Direct-Compression Excipients Estimated from Powder Characteristics and Flow Rates. Drug Development and Industrial Pharmacy. 1995; 21 (19): 2239–51.
  14. Nakamura S., Nakura M., Sakamoto T. The Effect of Cellulose Nanofibers on the Manufacturing of Mini-Tablets by Direct Powder Compression. Chemical & Pharmaceutical Bulletin. 2022; 70 (9): 628–36.
  15. Kachrimanis K., Petrides M., Malamataris S. Flow rate of some pharmaceutical diluents through die-orifices relevant to mini-tableting. International J. of Pharmaceutics. 2005; 303 (1–2): 72–80.
  16. Usuda S., Masukawa N., Leong K.H., Okada K., Onuki Y. Effects of Manufacturing Process Variables on the Tablet Weight Variation of Mini-tablets Clarified by a Definitive Screening Design. Chemical & Pharmaceutical Bulletin. 2021; 69 (9): 896–904.
  17. Baserinia R., Sinka I.C. Powder die filling under gravity and suction fill mechanisms. International J. of Pharmaceutics. 2019; 563: 135–55.
  18. Wagner-Hattler L., Québatte G., Keiser J., Schoelkopf J., Schlepütz C.M., Huwyler J., Puchkov M. Study of drug particle distributions within mini-tablets using synchrotron X-ray microtomography and superpixel image clustering. International J. of Pharmaceutics. 2020; 573: 118827.
  19. Šibanc R., Turk M., Dreu R. An analysis of the mini-tablet fluidized bed coating process. Chemical Engineering Research and Design. 2018; 134.
  20. Porter S., Sackett G., Liu L. Chapter 33 – Development, Optimization, and Scale-up of Process Parameters: Pan Coating. Developing Solid Oral Dosage Forms/eds. Y. Qiu et al. San Diego: Academic Press. Chapter 33. Development, Optimization, and Scale-up of Process Parameters. 2009; 761–805.
  21. Turk M., Šibanc R., Dreu R., Frankiewicz M., Sznitowska M. Assessment of Mini-Tablets Coating Uniformity as a Function of Fluid Bed Coater Inlet Conditions. Pharmaceutics. 2021; 13 (5): 746.
  22. Elezaj V., Lura A., Canha L., Breitkreutz J. Pharmaceutical Development of Film-Coated Mini-Tablets with Losartan Potassium for Epidermolysis Bullosa. Pharmaceutics. 2022; 14 (3): 570.
  23. De Brabander C., Vervaet C., Fiermans L., Remon J.P. Matrix mini-tablets based on starch/microcrystalline wax mixtures. International J. of Pharmaceutics. 2000; 199 (2): 195–203.
  24. Mohamed F.A.A., Matthew Roberts, Seton L., Ford J.L., Levina M., Rajabi-Siahboomi A.R. Production of extended release mini-tablets using directly compressible grades of HPMC. Drug Development and Industrial Pharmacy. 2013; 39 (11): 1690–7.
  25. Rosiaux Y., Jannin V., Hughes S., Marchaud D. Solid Lipid Excipients as Matrix Agents for Sustained Drug Delivery. Excipient Applications in Formulation Design and Drug Delivery. Еds. A.S. Narang, S.H.S. Boddu. Cham: Springer International Publishing. 2015; 237–71.
  26. Stoltenberg I., Breitkreutz J. Orally disintegrating mini-tablets (ODMTs) a novel solid oral dosage form for paediatric use. European Journal of Pharmaceutics and Biopharmaceutics: Official J. of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V. 2011; 78 (3): 462–9.
  27. Lura A., Elezaj V., Kokott M., Fischer B., Breitkreutz J. Transfer and scale-up of the manufacturing of orodispersible mini-tablets from a compaction simulator to an industrial rotary tablet press. International J. of Pharmaceutics. 2021; 602: 120636.
  28. Государственная фармакопея Российской Федерации. 14-е изд. Ч. 2. [Электронное издание] Режим доступа: https://femb.ru/record/pharmacopea14 [дата обращения: 27.05.2023] [Westberg A. Characterization of mini-tablets. Access mode: http://www.diva-portal.org/smash/get/diva2:1302540/FULLTEXT01.pdf [Accessed: 27.05.2023] (in Russian)].
  29. Westberg A. Characterization of mini-tablets. Доступно на: http://www.diva-portal.org/smash/get/diva2:1302540/FULLTEXT01.pdf [дата обращения: 27.05.2023]. [Westberg A. Characterization of mini-tablets. Access mode: http://www.diva-portal.org/smash/get/diva2:1302540/FULLTEXT01.pdf [Accessed: 27.05.2023]]
  30. Mitra B., Thool P., Meruva S., Aycinena J.A., Li J., Patel J., Patel K., Agarwal A., Karki S., Bowen W. Decoding the small size challenges of mini-tablets for enhanced dose flexibility and micro-dosing. International Journal of Pharmaceutics, 2020, Vol. 574, P. 118905.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Microtablets in different sizes [4]

Download (67KB)
3. Fig. 2. Types of staples. а – internal cap fixing; б – external cap fixing; в – monoblock punches

Download (90KB)
4. Fig. 3. Feed wheel paddles. а – flat paddles; б – angled paddles

Download (36KB)
5. Fig. 4. Fractional composition for different types of GPMC

Download (71KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».