Is Zaremba's conjecture true?

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For finite continued fractions in which all partial quotients lie in the alphabet $\{1,2,3,5\}$, it is shown that the set of denominators not exceeding $N$ has cardinality $\gg N^{0.85}$. A calculation using an analogue of Bourgain-Kontorovich's theorem from 2011 gives $\gg N^{0.80}$. Bibliography: 25 titles.

作者简介

Igor' Kan

Moscow Aviation Institute (National Research University)

Email: igor.kan@list.ru
Candidate of physico-mathematical sciences, Associate professor

参考

  1. S. K. Zaremba, “La methode des “bons treillis” pour le calcul des integerales multiples”, Applications of number theory to numerical analysis (Univ. Montreal, Montreal, QC, 1971), Academic Press, New York, 1972, 39–119
  2. J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180:1 (2014), 137–196
  3. N. G. Moshchevitin, On some open problems in Diophantine approximation
  4. Н. М. Коробов, Теоретико-числовые методы в приближенном анализе, Физматгиз, М., 1963, 224 с.
  5. D. Hensley, “The Hausdorff dimensions of some continued fraction Cantor sets”, J. Number Theory, 33:2 (1989), 182–198
  6. D. A. Frolenkov, I. D. Kan, A reinforcement of the Bourgain–Kontorovich's theorem by elementary methods
  7. D. A. Frolenkov, I. D. Kan, A reinforcement of the Bourgain–Kontorovich's theorem
  8. И. Д. Кан, Д. А. Фроленков, “Усиление теоремы Бургейна–Конторовича”, Изв. РАН. Сер. матем., 78:2 (2014), 87–144
  9. D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117
  10. ShinnYih Huang, “An improvement to Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914
  11. И. Д. Кан, “Усиление теоремы Бургейна–Конторовича. III”, Изв. РАН. Сер. матем., 79:2 (2015), 77–100
  12. И. Д. Кан, “Усиление теоремы Бургейна–Конторовича. IV”, Изв. РАН. Сер. матем., 80:6 (2016), 103–126
  13. И. Д. Кан, “Усиление теоремы Бургейна–Конторовича. V”, Аналитическая и комбинаторная теория чисел, Сборник статей. К 125-летию со дня рождения академика Ивана Матвеевича Виноградова, Тр. МИАН, 296, МАИК «Наука/Интерпериодика», М., 2017, 133–139
  14. M. Magee, Hee Oh, D. Winter, Expanding maps and continued fractions
  15. M. Magee, Hee Oh, D. Winter, Uniform congruence counting for Schottky semigroups in $operatorname{SL}_2(mathbf Z)$
  16. O. Jenkinson, “On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture”, Stoch. Dyn., 4:1 (2004), 63–76
  17. D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Theorie des nombres (Quebec, PQ, 1987), de Gruyter, Berlin, 1989, 371–385
  18. И. М. Виноградов, “Оценка одной суммы, распространенной на простые числа арифметической прогрессии”, Изв. АН СССР. Сер. матем., 30:3 (1966), 481–496
  19. Н. М. Коробов, Тригонометрические суммы и их приложения, Наука, М., 1989, 240 с.
  20. А. Я. Хинчин, Цепные дроби, 3-е изд., Физматгиз, М., 1961, 112 с.
  21. Р. Л. Грэхем, Д. Э. Кнут, О. Паташник, Конкретная математика. Основание информатики, Мир, М., 1998, 703 с.
  22. A. A. Dushistova, I. D. Kan, N. G. Moshchevitin, “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794
  23. Р. Вон, Метод Харди–Литтлвуда, Мир, М., 1985, 184 с.
  24. С. В. Конягин, “Оценки тригонометрических сумм по подгруппам и сумм Гаусса”, IV Международная конференция “Современные проблемы теории чисел и ее приложения”, посвященная 180-летию П. Л. Чебышева и 110-летию И. М. Виноградова. Актуальные проблемы, Ч. 3 (Тула, 2001), МГУ, мех.-матем. фак-т, М., 2002, 86–114
  25. И. Д. Кан, “Обращение неравенства Коши–Буняковского–Шварца”, Матем. заметки, 99:3 (2016), 361–365

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kan I.D., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».