Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 210, No 3 (2019)

Banach spaces with shortest network length depending only on pairwise distances between points

Burusheva L.S.

Abstract

For a real Banach space realising shortest networks for all finite subsets, we prove that a necessary and sufficient condition for the shortest network length to be expressed as a function only of pairwise distances between its points is that the space is either predual to $L_1$ or a Hilbert space. We give a characterization of spaces predual to $L_1$ and Hilbert spaces in terms of shortest networks.Bibliography: 23 titles.
Matematicheskii Sbornik. 2019;210(3):3-16
pages 3-16 views

The Fomenko–Zieschang invariants of nonconvex topological billiards

Vedyushkina V.V.

Abstract

Along with a classical planar billiard, one can consider a topological billiard for which the motion takes place on a locally planar surface obtained by an isometric gluing of several planar domains along boundaries that are arcs of confocal quadrics. Here, a point is moving inside every domain along segments of straight lines, passing from one domain into another when it hits the boundary of the gluing. The author has previously obtained the Liouville classification of all such topological billiards obtained by gluings along convex boundaries. In the present paper, we classify all topological integrable billiards obtained by gluing both along convex and along nonconvex boundaries from elementary billiards bounded by arcs of confocal quadrics. For all such nonconvex topological billiards, the Fomenko–Zieschang invariants (marked molecules $W^*$) of Liouville equivalence are calculated. Bibliography: 25 titles.
Matematicheskii Sbornik. 2019;210(3):17-74
pages 17-74 views

Is Zaremba's conjecture true?

Kan I.D.

Abstract

For finite continued fractions in which all partial quotients lie in the alphabet $\{1,2,3,5\}$, it is shown that the set of denominators not exceeding $N$ has cardinality $\gg N^{0.85}$. A calculation using an analogue of Bourgain-Kontorovich's theorem from 2011 gives $\gg N^{0.80}$. Bibliography: 25 titles.
Matematicheskii Sbornik. 2019;210(3):75-130
pages 75-130 views

Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents

Kozhevnikova L.M.

Abstract

The Dirichlet problem is considered in arbitrary domains for a class of second-order anisotropic elliptic equations with variable nonlinearity exponents and right-hand sides in $L_1$. It is proved that an entropy solution exists in anisotropic Sobolev spaces with variable exponent. It is proved that the entropy solution obtained is a renormalized solution of the problem under consideration. Bibliography: 37 titles.
Matematicheskii Sbornik. 2019;210(3):131-161
pages 131-161 views

An analogue of Schur–Weyl duality for the unitary group of a $\mathrm{II}_1$-factor

Nessonov N.I.

Abstract

An analogue of the classical Schur–Weyl duality is found for the unitary group of an arbitrary $\mathrm{II}_1$-factor. Bibliography: 20 titles.
Matematicheskii Sbornik. 2019;210(3):162-188
pages 162-188 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».