Etale monodromy and rational equivalence for $1$-cycles on cubic hypersurfaces in $\mathbb P^5$
- 作者: Banerjee K.1, Guletskii V.I.2
-
隶属关系:
- Harish-Chandra Research Institute
- Department of Mathematical Sciences, University of Liverpool
- 期: 卷 211, 编号 2 (2020)
- 页面: 3-45
- 栏目: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133309
- DOI: https://doi.org/10.4213/sm9240
- ID: 133309
如何引用文章
详细
作者简介
Kalyan Banerjee
Harish-Chandra Research Institute
Email: banerjeekalyan@hri.res.in
PhD, Researcher
Vladimir Guletskii
Department of Mathematical Sciences, University of Liverpool
Email: vladimir.guletskii@liverpool.ac.uk
Candidate of physico-mathematical sciences, no status
参考
- A. Beauville, “Varietes de Prym et jacobiennes intermediaires”, Ann. Sci. Ecole Norm. Sup. (4), 10:3 (1977), 309–391
- S. Bloch, “An example in the theory of algebraic cycles”, Algebraic K-theory (Northwestern Univ., Evanston, IL, 1976), Lecture Notes in Math., 551, Springer, Berlin, 1976, 1–29
- S. Bloch, “Torsion algebraic cycles and a theorem of Roitman”, Compositio Math., 39:1 (1979), 107–127
- S. Bloch, J. P. Murre, “On the Chow group of certain types of Fano threefolds”, Compositio Math., 39:1 (1979), 47–105
- J.-L. Colliot-Thelène, J.-J. Sansuc, C. Soule, “Torsion dans le groupe de Chow de codimension deux”, Duke Math. J., 50:3 (1983), 763–801
- O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001, xiv+233 pp.
- P. Deligne, “La conjecture de Weil. I”, Inst. Hautes Etudes Sci. Publ. Math., 43 (1974), 273–307
- P. Deligne, “La conjecture de Weil. II”, Inst. Hautes Etudes Sci. Publ. Math., 52 (1980), 137–252
- G. Faltings, “Complements to Mordell”, Rational points (Bonn, 1983/1984), Aspects Math., E6, Friedr. Viehweg, Braunschweig, 1984, 203–227
- E. Freitag, R. Kiehl, Etale cohomology and the Weil conjecture, transl. from the German, with an historical introduction by J. A. Dieudonne, Ergeb. Math. Grenzgeb. (3), 13, Springer-Verlag, Berlin, 1988, xviii+317 pp.
- S. Gorchinskiy, V. Guletskiĭ, “Motives and representability of algebraic cycles on threefolds over a field”, J. Algebraic Geom., 21:2 (2012), 347–373
- P. Deligne, N. Katz, Groupes de monodromie en geometrie algebrique, Seminaire de geometrie algebrique du Bois-Marie 1967–1969 (SGA 7 II), v. II, Lecture Notes in Math., 340, Springer-Verlag, Berlin–New York, 1973, x+438 pp.
- J. Kollar, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996, viii+320 pp.
- K. Lamotke, “The topology of complex projective varieties after S. Lefschetz”, Topology, 20:1 (1981), 15–51
- А. С. Меркурьев, А. А. Суслин, “$K$-когомологии многообразий Севери–Брауэра и гомоморфизм норменного вычета”, Изв. АН СССР. Сер. матем., 46:5 (1982), 1011–1046
- Д. Мамфорд, “Рациональная эквивалентность нульмерных циклов на поверхности”, Математика. Сб. пер., 16, № 2, Мир, М., 1972, 3–10
- J. P. Murre, “Un resultat en theorie des cycles algebriques de codimension deux”, C. R. Acad. Sci. Paris Ser. I Math., 296:23 (1983), 981–984
- А. A. Ройтман, “$Gamma $-эквивалентность нульмерных циклов”, Матем. сб., 86(128):4(12) (1971), 557–570
- A. A. Rojtman, “The torsion of the group of $0$-cycles modulo rational equivalence”, Ann. of Math. (2), 111:3 (1980), 553–569
- C. Schoen, “On Hodge structures and non-representability of Chow groups”, Compositio Math., 88:3 (1993), 285–316
- S. S. Shatz, “Group schemes, formal groups, and $p$-divisible groups”, Arithemtic geometry (Storrs, CT, 1984), Springer, New York, 1986, 29–78
- Mingmin Shen, Surfaces with involution and Prym constructions
- Mingmin Shen, “On relations among $1$-cycles on cubic hypersurfaces”, J. Algebraic Geom., 23:3 (2014), 539–569
- A. Suslin, V. Voevodsky, “Relative cycles and Chow sheaves”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 10–86
- J. Tate, “Conjectures on algebraic cycles in $l$-adic cohomology”, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, Part I, Amer. Math. Soc., Providence, RI, 1994, 71–83
- C. Vial, “Algebraic cycles and fibrations”, Doc. Math., 18 (2013), 1521–1553
- C. Voisin, “Theorème de Torelli pour les cubiques de $mathbb P^5$”, Invent. Math., 86:3 (1986), 577–601
- C. Voisin, “Sur les zero-cycles de certaines hypersurfaces munies d'un automorphisme”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19:4 (1992), 473–492
- C. Voisin, “Variations de structure de Hodge et zero-cycles sur les surfaces generales”, Math. Ann., 299:1 (1994), 77–103
- C. Voisin, Hodge theory and complex algebraic geometry, transl. from the French, v. I, Cambridge Stud. Adv. Math., 76, Cambridge Univ. Press, Cambridge, 2002, x+322 pp.
- C. Voisin, “Symplectic involutions of $K3$-surfaces act trivially on $mathrm{CH}_0$”, Doc. Math., 17 (2012), 851–860
- C. Voisin, “The generalized Hodge and Bloch conjectures are equivalent for general complete intersections”, Ann. Sci. Ec. Norm. Super. (4), 46:3 (2013), 449–475
- C. Voisin, “On the universal $mathrm{CH}_0$ of cubic hypersurfaces”, J. Eur. Math. Soc. (JEMS), 19:6 (2017), 1619–1653
补充文件
