Existence and uniqueness of a weak solution of an integro-differential aggregation equation on a Riemannian manifold

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A class of integro-differential aggregation equations with nonlinear parabolic term $b(x,u)_t$ is considered on a compact Riemannian manifold $\mathscr M$. The divergence term in the equations can degenerate with loss of coercivity and may contain nonlinearities of variable order. The impermeability boundary condition on the boundary $\partial\mathscr M\times[0,T]$ of the cylinder $Q^T=\mathscr M\times[0,T]$ is satisfied if there are no external sources of ‘mass’ conservation, $\int_\mathscr Mb(x,u(x,t)) d\nu=\mathrm{const}$. In a cylinder $Q^T$ for a sufficiently small $T$, the mixed problem for the aggregation equation is shown to have a bounded solution. The existence of a bounded solution of the problem in the cylinder $Q^\infty=\mathscr M\times[0,\infty)$ is proved under additional conditions. For equations of the form $b(x,u)_t=\Delta A(x,u)-\operatorname{div}(b(x,u)\mathscr G(u))+f(x,u)$ with the Laplace-Beltrami operator $\Delta$ and an integral operator $\mathscr G(u)$, the mixed problem is shown to have a unique bounded solution. Bibliography: 26 titles.

作者简介

Venera Vildanova

Bashkir State Pedagogical University n. a. M. Akmulla

Candidate of physico-mathematical sciences, Associate professor

参考

  1. В. Ф. Вильданова, Ф. Х. Мукминов, “Существование слабого решения интегро-дифференциального уравнения агрегации”, Дифференциальные и функционально-дифференциальные уравнения, СМФН, 63, № 4, РУДН, М., 2017, 557–572
  2. F. Punzo, “Well-posedness of the Cauchy problem for nonlinear parabolic equations with variable density in the hyperbolic space”, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 485–501
  3. J. L. Vazquez, “Fundamental solution and long time behavior of the porous medium equation in hyperbolic space”, J. Math. Pures Appl. (9), 104:3 (2015), 454–484
  4. J. A. Carrillo, S. Hittmeir, B. Volzone, Y. Yao, “Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics”, Invent. Math., 218:3 (2019), 889–977
  5. E. F. Keller, L. A. Segel, “Initiation of slime mold aggregation viewed as an instability”, J. Theoret. Biol., 26:3 (1970), 399–415
  6. P. H. Chavanis, C. Rosier, C. Sire, “Thermodynamics of self-gravitating systems”, Phys. Rev. E (3), 66:3 (2002), 036105, 19 pp.
  7. P. Biler, T. Nadzieja, “Global and exploding solutions in a model of self-gravitating systems”, Rep. Math. Phys., 52:2 (2003), 205–225
  8. P. H. Chavanis, J. Sommeria, R. Robert, “Statistical mechanics of two-dimensional vortices and collisionless stellar systems”, Astrophys. J., 471 (1996), 385–399
  9. В. Ф. Вильданова, “Существование и единственность слабого решения нелокального уравнения агрегации с вырождающейся диффузией общего вида”, Матем. сб., 209:2 (2018), 66–81
  10. A. L. Bertozzi, D. Slepcev, “Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion”, Commun. Pure Appl. Anal., 9:6 (2010), 1617–1637
  11. J. A. Carrillo, F. Hoffmann, E. Mainini, B. Volzone, “Ground states in the diffusion-dominated regime”, Calc. Var. Partial Differential Equations, 57:5 (2018), 127, 28 pp.
  12. V. Calvez, J. A. Carrillo, F. Hoffmann, “Equilibria of homogeneous functionals in the fair-competition regime”, Nonlinear Anal., 159 (2017), 85–128
  13. Ф. Х. Мукминов, “Единственность ренормализованного решения эллиптико-параболической задачи в анизотропных пространствах Соболева–Орлича”, Матем. сб., 208:8 (2017), 106–125
  14. Ф. Х. Мукминов, “Существование ренормализованного решения анизотропной параболической задачи с переменными показателями нелинейности”, Матем. сб., 209:5 (2018), 120–144
  15. Ю. А. Алхутов, В. В. Жиков, “Теоремы существования и единственности решений параболических уравнений с переменным порядком нелинейности”, Матем. сб., 205:3 (2014), 3–14
  16. В. Н. Четвериков, “Субмерсии в категории бесконечно продолженных дифференциальных уравнений”, Научный вестник МГТУ ГА, 2013, № 194(8), 88–97
  17. А. М. Виноградов, И. С. Красильщик, В. В. Лычагин, Введение в геометрию нелинейных дифференциальных уравнений, Наука, М., 1986, 336 с.
  18. A. Grigor'yan, Heat kernel and analysis on manifolds, AMS/IP Stud. Adv. Math., 47, Amer. Math. Soc., Providence, RI; International Press, Boston, MA, 2009, xviii+482 pp.
  19. В. В. Жиков , М. Д. Сурначeв, “О плотности гладких функций в весовых соболевских пространствах с переменным показателем”, Алгебра и анализ, 27:3 (2015), 95–124
  20. О. А. Ладыженская, В. А. Солонников, Н. Н. Уральцева, Линейные и квазилинейные уравнения параболического типа, Наука, М., 1967, 736 с.
  21. С. Л. Соболев, Некоторые применения функционального анализа в математической физике, 3-е изд., Наука, М., 1988, 334 с.
  22. H. W. Alt, S. Luckhaus, “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:3 (1983), 311–341
  23. Ж. Л. Лионс, Некоторые методы решения нелинейных краевых задач, Мир, М., 1972, 587 с.
  24. F. Otto, “$L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations”, J. Differential Equations, 131:1 (1996), 20–38
  25. H. Brezis, Analyse fonctionnelle. Theorie et applications, Collect. Math. Appl. Maîtrise, Masson, Paris, 1983, xiv+234 pp.
  26. Ж.-Л. Лионс, Э. Мадженес, Неоднородные граничные задачи и их приложения, Мир, М., 1971, 371 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Vildanova V.F., 2020

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».