Bounded automorphism groups of compact complex surfaces
- Authors: Prokhorov Y.G.1, Shramov C.A.1
 - 
							Affiliations: 
							
- Steklov Mathematical Institute of Russian Academy of Sciences
 
 - Issue: Vol 211, No 9 (2020)
 - Pages: 105-118
 - Section: Articles
 - URL: https://journal-vniispk.ru/0368-8666/article/view/133348
 - DOI: https://doi.org/10.4213/sm9335
 - ID: 133348
 
Cite item
Abstract
Keywords
About the authors
Yuri Gennadievich Prokhorov
Steklov Mathematical Institute of Russian Academy of Sciences
														Email: prokhoro@mi-ras.ru
				                					                																			                								Doctor of physico-mathematical sciences, Professor				                														
Constantin Aleksandrovich Shramov
Steklov Mathematical Institute of Russian Academy of Sciences
														Email: costya.shramov@gmail.com
				                					                																			                								Doctor of physico-mathematical sciences, no status				                														
References
- D. N. Akhiezer, Lie group actions in complex analysis, Aspects Math., E27, Friedr. Vieweg & Sohn, Braunschweig, 1995, viii+201 pp.
 - C. Bennett, R. Miranda, “The automorphism groups of the hyperelliptic surfaces”, Rocky Mountain J. Math., 20:1 (1990), 31–37
 - C. Birkar, Singularities of linear systems and boundedness of Fano varieties, 2016
 - W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp.
 - A. Fujiki, “On automorphism groups of compact Kähler manifolds”, Invent. Math., 44:3 (1978), 225–258
 - D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math., 158, Cambridge Univ. Press, Cambridge, 2016, xi+485 pp.
 - Jin Hong Kim, “Jordan property and automorphism groups of normal compact Kähler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024, 9 pp.
 - K. Kodaira, “On compact analytic surfaces. II”, Ann. of Math. (2), 77:3 (1963), 563–626
 - J. Kollar, “The structure of algebraic threefolds: an introduction to Mori's program”, Bull. Amer. Math. Soc. (N.S.), 17:2 (1987), 211–273
 - R. Miranda, The basic theory of elliptic surfaces, Notes of lectures, Dottorato Ric. Mat., ETS Editrice, Pisa, 1989, vi+108 pp.
 - Sh. Mukai, Yu. Namikawa, “Automorphisms of Enriques surfaces which act trivially on the cohomology groups”, Invent. Math., 77:3 (1984), 383–397
 - Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072
 - Yu. Prokhorov, C. Shramov, “Automorphism groups of compact complex surfaces”, Int. Math. Res. Not. IMRN, Publ. online: 2019, rnz124, 22 pp.
 - Yu. Prokhorov, C. Shramov, “Finite groups of birational selfmaps of threefolds”, Math. Res. Lett., 25:3 (2018), 957–972
 - J. Sawon, Isotrivial elliptic $K3$ surfaces and Lagrangian fibrations, 2014
 - J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450
 - C. Shramov, “Finite groups acting on elliptic surfaces”, Eur. J. Math., Publ. online: 2019, 12 pp.
 - C. Shramov, V. Vologodsky, Automorphisms of pointless surfaces, 2018
 - K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Notes written in collaboration with P. Cherenack, Lecture Notes in Math., 439, Springer-Verlag, Berlin–New York, 1975, xix+278 pp.
 - В. В. Никулин, “Классификация решеток Пикара К3-поверхностей”, Изв. РАН. Сер. матем., 82:4 (2018), 115–177
 - M. Maruyama, “On automorphism groups of ruled surfaces”, J. Math. Kyoto Univ., 11 (1971), 89–112
 - В. В. Пржиялковский, И. А. Чельцов, К. А. Шрамов, “Трехмерные многообразия Фано с бесконечными группами автоморфизмов”, Изв. РАН. Сер. матем., 83:4 (2019), 226–280
 - А. В. Пухликов, “Автоморфизмы некоторых аффинных дополнений в проективном пространстве”, Матем. сб., 209:2 (2018), 138–152
 
Supplementary files
				
			
					
						
						
						
						
				

