Bounded automorphism groups of compact complex surfaces
- Autores: Prokhorov Y.G.1, Shramov C.A.1
-
Afiliações:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Edição: Volume 211, Nº 9 (2020)
- Páginas: 105-118
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133348
- DOI: https://doi.org/10.4213/sm9335
- ID: 133348
Citar
Resumo
Palavras-chave
Sobre autores
Yuri Prokhorov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: prokhoro@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
Constantin Shramov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: costya.shramov@gmail.com
Doctor of physico-mathematical sciences, no status
Bibliografia
- D. N. Akhiezer, Lie group actions in complex analysis, Aspects Math., E27, Friedr. Vieweg & Sohn, Braunschweig, 1995, viii+201 pp.
- C. Bennett, R. Miranda, “The automorphism groups of the hyperelliptic surfaces”, Rocky Mountain J. Math., 20:1 (1990), 31–37
- C. Birkar, Singularities of linear systems and boundedness of Fano varieties, 2016
- W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp.
- A. Fujiki, “On automorphism groups of compact Kähler manifolds”, Invent. Math., 44:3 (1978), 225–258
- D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math., 158, Cambridge Univ. Press, Cambridge, 2016, xi+485 pp.
- Jin Hong Kim, “Jordan property and automorphism groups of normal compact Kähler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024, 9 pp.
- K. Kodaira, “On compact analytic surfaces. II”, Ann. of Math. (2), 77:3 (1963), 563–626
- J. Kollar, “The structure of algebraic threefolds: an introduction to Mori's program”, Bull. Amer. Math. Soc. (N.S.), 17:2 (1987), 211–273
- R. Miranda, The basic theory of elliptic surfaces, Notes of lectures, Dottorato Ric. Mat., ETS Editrice, Pisa, 1989, vi+108 pp.
- Sh. Mukai, Yu. Namikawa, “Automorphisms of Enriques surfaces which act trivially on the cohomology groups”, Invent. Math., 77:3 (1984), 383–397
- Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072
- Yu. Prokhorov, C. Shramov, “Automorphism groups of compact complex surfaces”, Int. Math. Res. Not. IMRN, Publ. online: 2019, rnz124, 22 pp.
- Yu. Prokhorov, C. Shramov, “Finite groups of birational selfmaps of threefolds”, Math. Res. Lett., 25:3 (2018), 957–972
- J. Sawon, Isotrivial elliptic $K3$ surfaces and Lagrangian fibrations, 2014
- J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450
- C. Shramov, “Finite groups acting on elliptic surfaces”, Eur. J. Math., Publ. online: 2019, 12 pp.
- C. Shramov, V. Vologodsky, Automorphisms of pointless surfaces, 2018
- K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Notes written in collaboration with P. Cherenack, Lecture Notes in Math., 439, Springer-Verlag, Berlin–New York, 1975, xix+278 pp.
- В. В. Никулин, “Классификация решеток Пикара К3-поверхностей”, Изв. РАН. Сер. матем., 82:4 (2018), 115–177
- M. Maruyama, “On automorphism groups of ruled surfaces”, J. Math. Kyoto Univ., 11 (1971), 89–112
- В. В. Пржиялковский, И. А. Чельцов, К. А. Шрамов, “Трехмерные многообразия Фано с бесконечными группами автоморфизмов”, Изв. РАН. Сер. матем., 83:4 (2019), 226–280
- А. В. Пухликов, “Автоморфизмы некоторых аффинных дополнений в проективном пространстве”, Матем. сб., 209:2 (2018), 138–152
Arquivos suplementares
