Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 211, No 9 (2020)

Stable decomposability of matrices over the rational closure of a group algebra of an ordered group

Dubrovin N.I.

Abstract

Under the assumption that the rational closure of a group algebra of a left-ordered group in the ring of operators of the module of formal Malcev series is a division ring, we find a canonical form of nonsingular matrices of this division ring. Bibliography: 10 titles.
Matematicheskii Sbornik. 2020;211(9):3-23
pages 3-23 views

Simple tiles and attractors

Zaitseva T.I.

Abstract

We study self-similar attractors in the space $\mathbb R^d$, that is, self-similar compact sets defined by several affine operators with the same linear part. The special case of attractors when the matrix $M$ of the linear part and the shifts of the affine operators are integer, is well known in the literature due to the many applications in the theory of wavelets and in approximation theory. In this case, if an attractor has measure one it is called a tile. We classify self-similar attractors and tiles in the case when they are either polyhedra or a union of finitely many polyhedra. We obtain a complete description of the matrices $M$ and the digit sets for parallelepiped tiles and for convex tiles in arbitrary dimensions. It is proved that on a two-dimensional plane, every polygonal tile (not necessarily convex) must be a parallelogram. Nontrivial examples of multidimensional tiles which are a finite union of polyhedra are given, and in the case $d=1$ a complete classification is provided for them. Applications to orthonormal Haar systems in $\mathbb R^d$ and to integer univariate tiles are considered. Bibliography: 18 titles.
Matematicheskii Sbornik. 2020;211(9):24-59
pages 24-59 views

A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients

Mazalov M.Y.

Abstract

A natural counterpart of Vitushkin's criterion is obtained in the problem of uniform approximation of functions by solutions of second-order homogeneous elliptic equations with constant complex coefficient on compact subsets of $\mathbb R^d$, $d\ge3$. It is stated in terms of a single (scalar) capacity connected with the leading coefficient of the Laurent series. The scheme of approximation uses methods in the theory of singular integrals and, in particular, constructions of certain special Lipschitz surfaces and Carleson measures. Bibliography: 23 titles.
Matematicheskii Sbornik. 2020;211(9):60-104
pages 60-104 views

Bounded automorphism groups of compact complex surfaces

Prokhorov Y.G., Shramov C.A.

Abstract

We classify compact complex surfaces whose groups of bimeromorphic selfmaps have bounded finite subgroups. We also prove that the stabilizer of a point in the automorphism group of a compact complex surface of zero Kodaira dimension, as well as the stabilizer of a point in the automorphism group of an arbitrary compact Kähler manifold of nonnegative Kodaira dimension, always has bounded finite subgroups. Bibliography: 23 titles.
Matematicheskii Sbornik. 2020;211(9):105-118
pages 105-118 views

Operator $E$-norms and their use

Shirokov M.E.

Abstract

We consider a family of equivalent norms (called operator $E$-norms) on the algebra $\mathfrak B(\mathscr H)$ of all bounded operators on a separable Hilbert space $\mathscr H$ induced by a positive densely defined operator $G$ on $\mathscr H$. By choosing different generating operators $G$ we can obtain the operator $E$-norms producing different topologies, in particular,the strong operator topology on bounded subsets of $\mathfrak B(\mathscr H)$.We obtain a generalised version of the Kretschmann-Schlingemann-Werner theorem, which shows that the Stinespring representation of completely positive linear maps is continuous with respect to the energy-constrained norm of complete boundedness on the set of completely positive linear maps and the operator $E$-norm on the set of Stinespring operators.The operator $E$-norms induced by a positive operator $G$ are well defined for linear operators relatively bounded with respect to the operator $\sqrt G$, and the linear space of such operators equipped with any of these norms is a Banach space. We obtain explicit relations between operator $E$-norms and the standard characteristics of $\sqrt G$-bounded operators. Operator $E$-norms allow us to obtain simple upper bounds and continuity bounds for some functions depending on $\sqrt G$-bounded operators used in applications.Bibliography: 29 titles.
Matematicheskii Sbornik. 2020;211(9):119-152
pages 119-152 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».