Manifolds of isospectral arrow matrices
- Authors: Ayzenberg A.A.1, Buchstaber V.M.2
-
Affiliations:
- Faculty of Computer Science, National Research University "Higher School of Economics"
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 212, No 5 (2021)
- Pages: 3-36
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133378
- DOI: https://doi.org/10.4213/sm9381
- ID: 133378
Cite item
Abstract
About the authors
Anton Andreyevich Ayzenberg
Faculty of Computer Science, National Research University "Higher School of Economics"
Email: ayzenberga@gmail.com
Candidate of physico-mathematical sciences, no status
Victor Matveevich Buchstaber
Steklov Mathematical Institute of Russian Academy of Sciences
Email: buchstab@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
References
- А. А. Айзенберг, “Локально стандартные действия тора и пучки над множествами Буксбаума”, Матем. сб., 208:9 (2017), 3–25
- A. Ayzenberg, “Locally standard torus actions and $h'$-numbers of simplicial posets”, J. Math. Soc. Japan, 68:4 (2016), 1725–1745
- A. Ayzenberg, “Homology cycles in manifolds with locally standard torus actions”, Homology, Homotopy Appl., 18:1 (2016), 1–23
- A. Ayzenberg, “Topological model for $h"$-vectors of simplicial manifolds”, Bol. Soc. Mat. Mex. (3), 23:1 (2017), 413–421
- A. Ayzenberg, “Space of isospectral periodic tridiagonal matrices”, Algebr. Geom. Topol., 20:6 (2020), 2957–2994
- А. А. Айзенберг, В. М. Бухштабер, “Нерв-комплексы и момент–угол-пространства выпуклых многогранников”, Классическая и современная математика в поле деятельности Бориса Николаевича Делоне, Сборник статей. К 120-летию со дня рождения члена-корреспондента АН СССР Бориса Николаевича Делоне, Труды МИАН, 275, МАИК «Наука/Интерпериодика», М., 2011, 22–54
- A. Ayzenberg, V. Buchstaber, “Manifolds of isospectral matrices and Hessenberg varieties”, Int. Math. Res. Not. IMRN, 2020, rnz388, 12 pp.
- A. Ayzenberg, M. Masuda, “Volume polynomials and duality algebras of multi-fans”, Arnold Math. J., 2:3 (2016), 329–381
- A. Ayzenberg, M. Masuda, Seonjeong Park, Haozhi Zeng, “Cohomology of toric origami manifolds with acyclic proper faces”, J. Symplectic Geom., 15:3 (2017), 645–685
- A. M. Bloch, H. Flaschka, T. Ratiu, “A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra”, Duke Math. J., 61:1 (1990), 41–65
- V. M. Buchstaber, N. Yu. Erokhovets, “Fullerenes, polytopes and toric topology”, Combinatorial and toric homotopy, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Sci. Publ., Hackensack, NJ, 2018, 67–178
- В. М. Бухштабер, И. Ю. Лимонченко, “Произведения Масси, торическая топология и комбинаторика многогранников”, Изв. РАН. Сер. матем., 83:6 (2019), 3–62
- V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp.
- В. М. Бухштабер, С. Терзич, “Основания $(2n,k)$-многообразий”, Матем. сб., 210:4 (2019), 41–86
- A. Cannas da Silva, V. Guillemin, A. R. Pires, “Symplectic origami”, Int. Math. Res. Not. IMRN, 2011:18 (2011), 4252–4293
- M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451
- F. De Mari, M. Pedroni, “Toda flows and real Hessenberg manifolds”, J. Geom. Anal., 9:4 (1999), 607–625
- S. Fisk, A very short proof of Cauchy's interlace theorem for eigenvalues of Hermitian matrices, 2005
- Е. Грбич, А. Линтон, “Тройные произведения Масси наименьшей размерности в момент-угол-комплексах”, УМН, 75:6(456) (2020), 175–176
- V. Guillemin, L. Jeffrey, R. Sjamaar, “Symplectic implosion”, Transform. Groups, 7:2 (2002), 155–184
- I. Krichever, K. L. Vaninsky, “The periodic and open Toda lattice”, Mirror symmetry, IV (Montreal, QC, 2000), AMS/IP Stud. Adv. Math., 33, Amer. Math. Soc., Providence, RI, 2002, 139–158
- M. Masuda, T. Panov, “On the cohomology of torus manifolds”, Osaka J. Math., 43:3 (2006), 711–746
- P. van Moerbeke, “The spectrum of Jacobi matrices”, Invent. Math., 37:1 (1976), 45–81
- J. Moser, “Finitely many points on the line under the influence of an exponential potential – an integrable system”, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, WA, 1974), Lecture Notes in Phys., 38, Springer, Berlin, 1975, 467–497
- T. Nanda, “Differential equations and the $QR$ algorithm”, SIAM J. Numer. Anal., 22:2 (1985), 310–321
- I. Novik, E. Swartz, “Socles of Buchsbaum modules, complexes and posets”, Adv. Math., 222:6 (2009), 2059–2084
- I. Novik, E. Swartz, “Gorenstein rings through face rings of manifolds”, Compos. Math., 145:4 (2009), 993–1000
- Г. Ю. Панина, “Циклопермутоэдр”, Геометрия, топология и приложения, Сборник статей. К 70-летию со дня рождения профессора Николая Петровича Долбилина, Труды МИАН, 288, МАИК «Наука/Интерпериодика», М., 2015, 149–162
- G. A. Reisner, “Cohen–Macaulay quotients of polynomial rings”, Adv. Math., 21:1 (1976), 30–49
- P. Schenzel, “On the number of faces of simplicial complexes and the purity of Frobenius”, Math. Z., 178:1 (1981), 125–142
- R. P. Stanley, Combinatorics and commutative algebra, Progr. Math., 41, 2nd ed., Birkhäuser Boston Inc., Boston, MA, 1996, x+164 pp.
- C. Tomei, “The topology of isospectral manifolds of tridiagonal matrices”, Duke Math. J., 51:4 (1984), 981–996
Supplementary files
