Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 212, № 5 (2021)

Обложка

Многообразия изоспектральных матриц-стрелок

Айзенберг А.А., Бухштабер В.М.

Аннотация

Матрицей-стрелкой называется матрица с нулями вне главной диагонали, первой строки и первого столбца. В работе исследуется пространство $M_{\operatorname{St}_n,\lambda}$ всех эрмитовых матриц-стрелок размера $(n+1)\times (n+1)$, имеющих заданный простой спектр $\lambda$. Доказано, что это пространство – гладкое $2n$-мерное многообразие с локально стандартным действием тора, описана топология и комбинаторика его пространства орбит. При $n\geqslant 3$ пространство орбит $M_{\operatorname{St}_n,\lambda}/T^n$ не является многогранником, а значит, $M_{\operatorname{St}_n,\lambda}$ не является квазиторическим многообразием. Тем не менее на $M_{\operatorname{St}_n,\lambda}$ имеется действие полупрямого произведения $T^n\rtimes\Sigma_n$ и его пространство орбит диффеоморфно специальному простому многограннику $\mathscr B^n$, который получается из куба срезкой граней коразмерности 2. При $n=3$ пространство орбит $M_{\operatorname{St}_3,\lambda}/T^3$ является полноторием, граница которого разбита регулярным образом на шестиугольники, что позволило описать кольца когомологий и эквивариантных когомологий шестимерного многообразия $M_{\operatorname{St}_3,\lambda}$ и еще одного многообразия – его двойника.Библиография: 32 названия.
Математический сборник. 2021;212(5):3-36
pages 3-36 views

Монотонная линейная связность чебышёвских множеств в трехмерных пространствах

Алимов А.Р., Беднов Б.Б.

Аннотация

Дается характеризация трехмерных банаховых пространств, в которых любое чебышёвское множество монотонно линейно связно. А именно, в трехмерном нормированном пространстве $X$ любое чебышёвское множество монотонно линейно связно, если и только если выполнено одно из следующих двух условий: любая достижимая точка единичной сферы пространства $X$ является точкой гладкости; $X=Y\oplus_\infty \mathbb R$ (т.е. единичная сфера пространства $X$ – цилиндр). Библиография: 17 названий.
Математический сборник. 2021;212(5):37-57
pages 37-57 views

Интерполяционные последовательности и неполные системы экспонент на кривых

Гайсин Р.А.

Аннотация

Изучаются интерполяционные последовательности вида $\{\pm\lambda_n\}$ $(\lambda_n>0)$ и проблема неполноты системы экспонент $\{e^{\pm\lambda_n z}\}$ по равномерной норме на семействе произвольных спрямляемых кривых.В терминах узлов интерполяции (что то же самое – показателей системы экспонент) доказан критерий разрешимости интерполяционной задачи и усиленная неполнота системы $\{e^{\pm\lambda_n z}\}$. Тем самым существенно усилены известные результаты, в том числе Дж. Коревара, М. Диксона и Б. Берндсона.Библиография: 23 названия.
Математический сборник. 2021;212(5):58-79
pages 58-79 views

О формуле следов для обыкновенных дифференциальных операторов высокого порядка

Гальковский Е.Д., Назаров А.И.

Аннотация

Получена формула следа первого порядка для дифференциального оператора высокого порядка на отрезке в случае, когда возмущающий оператор является оператором умножения на конечный комплекснозначный заряд. Для операторов четных порядков $n\ge4$ результат содержит слагаемое нового типа, не известное ранее.Библиография: 15 названий.
Математический сборник. 2021;212(5):80-101
pages 80-101 views

О $DA$-эндоморфизмах двумерного тора

Гринес В.З., Жужома Е.В., Куренков Е.Д.

Аннотация

Доказывается, что в каждом гомотопическом классе непрерывных отображений двумерного тора, индуцирующих гиперболическое действие в фундаментальной группе и не содержащих растягивающих отображений, существует $A$-эндоморфизм $f$, неблуждающее множество которого состоит из притягивающего гиперболического стока и нетривиального одномерного сжимающегося репеллера, который является одномерной ориентируемой ламинацией, локально гомеоморфной прямому произведению канторова множества на отрезок. Более того, неустойчивое $Df$-инвариантное подрасслоение касательного пространства к репеллеру обладает свойством единственности.Библиография: 23 названия.
Математический сборник. 2021;212(5):102-132
pages 102-132 views

Вариационный метод для эллиптических систем с разрывными нелинейностями

Павленко В.Н., Потапов Д.К.

Аннотация

Изучается система из двух эллиптических уравнений с разрывными нелинейностями и однородными граничными условиями Дирихле. Вариационным методом получены теоремы существования сильных и полуправильных решений. Сильное решение называется полуправильным, если мера множества, на котором значения решения являются точками разрыва нелинейности по фазовой переменной, равна нулю. Выделены классы нелинейностей, для которых выполняются условия доказанных теорем. Вариационный подход в настоящей работе базируется на понятии квазипотенциального оператора, в отличие от традиционного, где используется обобщенный градиент Кларка. Библиография: 22 названия.
Математический сборник. 2021;212(5):133-152
pages 133-152 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».