Variational method for elliptic systems with discontinuous nonlinearities

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A system of two elliptic equations with discontinuous nonlinearities and homogeneous Dirichlet boundary conditions is studied. Existence theorems for strong and semiregular solutions are deduced using a variational method. A strong solution is called semiregular if the set on which the values of the solution are points of discontinuity of the nonlinearity with respect to the phase variable has measure zero. Classes of nonlinearities are distinguished for which the assumptions of the theorems established here hold. The variational approach in this paper is based on the concept of a quasipotential operator, by contrast with the traditional approach, which uses the generalized Clark gradient. Bibliography: 22 titles.

Sobre autores

Vyacheslav Pavlenko

Chelyabinsk State University

Email: pavlenko-vn@yandex.ru
Doctor of physico-mathematical sciences, Professor

Dmitriy Potapov

Saint Petersburg State University

Email: d.potapov@spbu.ru
Candidate of physico-mathematical sciences, Associate professor

Bibliografia

  1. В. Н. Павленко, “О разрешимости некоторых нелинейных уравнений с разрывными операторами”, Докл. АН СССР, 204:6 (1972), 1320–1323
  2. М. М. Вайнберг, Вариационный метод и метод монотонных операторов в теории нелинейных уравнений, Наука, М., 1972, 416 с.
  3. F. J. S. A. Correa, J. V. A. Gonçalves, “Sublinear elliptic systems with discontinuous nonlinearities”, Appl. Anal., 44:1-2 (1992), 37–50
  4. Kung-Ching Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129
  5. C. O. Alves, D. C. de Morais Filho, M. A. S. Souto, “An application of the dual variational principle to a Hamiltonian system with discontinuous nonlinearities”, Electron. J. Differential Equations, 2004 (2004), 46, 12 pp.
  6. Kaimin Teng, “Existence and multiplicity results for some elliptic systems with discontinuous nonlinearities”, Nonlinear Anal., 75:5 (2012), 2975–2987
  7. Liu Zhenhai, “On elliptic systems with discontinuous nonlinearities”, Period. Math. Hungar., 30:3 (1995), 211–223
  8. М. А. Красносельский, А. В. Покровский, “Правильные решения уравнений с разрывными нелинейностями”, Докл. АН СССР, 226:3 (1976), 506–509
  9. М. А. Красносельский, А. В. Покровский, “Об эллиптических уравнениях с разрывными нелинейностями”, Докл. РАН, 342:6 (1995), 731–734
  10. М. А. Красносельский, А. В. Лусников, “Правильные неподвижные точки и устойчивые инвариантные множества монотонных операторов”, Функц. анализ и его прил., 30:3 (1996), 34–46
  11. В. Н. Павленко, Д. К. Потапов, “Существование полуправильных решений эллиптических спектральных задач с разрывными нелинейностями”, Матем. сб., 206:9 (2015), 121–138
  12. Д. К. Потапов, “Бифуркационные задачи для уравнений эллиптического типа с разрывными нелинейностями”, Матем. заметки, 90:2 (2011), 280–284
  13. D. K. Potapov, V. V. Yevstafyeva, “Lavrent'ev problem for separated flows with an external perturbation”, Electron. J. Differential Equations, 2013 (2013), 255, 6 pp.
  14. Д. К. Потапов, “Об одной задаче электрофизики с разрывной нелинейностью”, Дифференц. уравнения, 50:3 (2014), 421–424
  15. В. Н. Павленко, Д. К. Потапов, “Задача Эленбааса об электрической дуге”, Матем. заметки, 103:1 (2018), 92–100
  16. В. Н. Павленко, “Вариационный метод для уравнений с разрывными операторами”, Вестник ЧелГУ, 1994, № 2, 87–95
  17. В. Н. Павленко, Д. К. Потапов, “О существовании луча собственных значений для уравнений с разрывными операторами”, Сиб. матем. журн., 42:4 (2001), 911–919
  18. В. Н. Павленко, “Теоремы существования для эллиптических вариационных неравенств с квазипотенциальными операторами”, Дифференц. уравнения, 24:8 (1988), 1397–1402
  19. Д. Гилбарг, Н. Трудингер, Эллиптические дифференциальные уравнения с частными производными второго порядка, Наука, М., 1989, 464 с.
  20. А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, 3-е перераб. изд., Наука, М., 1972, 496 с.
  21. Д. К. Потапов, “Спектральные задачи для вариационных неравенств с разрывными операторами”, Матем. заметки, 93:2 (2013), 252–262
  22. И. В. Шрагин, “Условия измеримости суперпозиций”, Докл. АН СССР, 197:2 (1971), 295–298

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pavlenko V.N., Potapov D.K., 2021

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).