Nonlocal balance equations with parameters in the space of signed measures
- Autores: Pogodaev N.I.1,2, Staritsyn M.V.2
-
Afiliações:
- N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
- Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
- Edição: Volume 213, Nº 1 (2022)
- Páginas: 69-94
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133418
- DOI: https://doi.org/10.4213/sm9516
- ID: 133418
Citar
Resumo
Sobre autores
Nikolai Pogodaev
N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences; Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
Email: npogo@mail.ru
Candidate of physico-mathematical sciences, Head Scientist Researcher
Maxim Staritsyn
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
Email: starmax@icc.ru
Candidate of physico-mathematical sciences, no status
Bibliografia
- L. Ambrosio, N. Gigli, G. Savare, Gradient flows in metric spaces and in the space of probability measures, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2005, viii+333 pp.
- L. Ambrosio, E. Mainini, S. Serfaty, “Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices”, Ann. Inst. H. Poincare Anal. Non Lineaire, 28:2 (2011), 217–246
- Y. Averboukh, “Viability theorem for deterministic mean field type control systems”, Set-Valued Var. Anal., 26:4 (2018), 993–1008
- E. J. Balder, “Necessary and sufficient conditions for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal., 11:12 (1987), 1399–1404
- V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp.
- В. И. Богачeв, Н. В. Крылов, М. Рeкнер, С. В. Шапошников, Уравнения Фоккера–Планка–Колмогорова, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2013, 592 с.
- B. Bonnet, H. Frankowska, “Differential inclusions in Wasserstein spaces: the Cauchy–Lipschitz framework”, J. Differential Equations, 271 (2021), 594–637
- А. Брессан, Б. Пикколи, Введение в математическую теорию управления, Ин-т компьютерных исследований, Ижевск, 2015, 480 с.
- G. Cavagnari, A. Marigonda, Khai T. Nguyen, F. S. Priuli, “Generalized control systems in the space of probability measures”, Set-Valued Var. Anal., 26:3 (2018), 663–691
- L. Chayes, H. K. Lei, “Transport and equilibrium in non-conservative systems”, Adv. Differential Equations, 23:1-2 (2018), 1–64
- R. M. Colombo, M. Herty, M. Mercier, “Control of the continuity equation with a non local flow”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 353–379
- Р. Л. Добрушин, “Уравнения Власова”, Функц. анализ и его прил., 13:2 (1979), 48–58
- N. Duteil, B. Piccoli, Control of collective dynamics with time-varying weights, 2020
- A. Figalli, N. Gigli, “A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions”, J. Math. Pures Appl. (9), 94:2 (2010), 107–130
- W. Gangbo, Hwa Kil Kim, T. Pacini, Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, Mem. Amer. Math. Soc., 211, no. 993, Amer. Math. Soc., Providence, RI, 2011, vi+77 pp.
- S. Kondratyev, L. Monsaingeon, D. Vorotnikov, “A new optimal transport distance on the space of finite Radon measures”, Adv. Differential Equations, 21:11-12 (2016), 1117–1164
- C. Lattanzio, P. Marcati, “Global well-posedness and relaxation limits of a model for radiating gas”, J. Differential Equations, 190:2 (2003), 439–465
- M. Liero, A. Mielke, “Gradient structures and geodesic convexity for reaction-diffusion systems”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371:2005 (2013), 20120346, 28 pp.
- M. Liero, A. Mielke, G. Savare, “Optimal transport in competition with reaction: The Hellinger–Kantorovich distance and geodesic curves”, SIAM J. Math. Anal., 48:4 (2016), 2869–2911
- E. Mainini, “A description of transport cost for signed measures”, Теория представлений, динамические системы, комбинаторные методы. XX, Зап. науч. сем. ПОМИ, 390, ПОМИ, СПб., 2011, 147–181
- E. Mainini, “On the signed porous medium flow”, Netw. Heterog. Media, 7:3 (2012), 525–541
- A. Marigonda, M. Quincampoix, “Mayer control problem with probabilistic uncertainty on initial positions”, J. Differential Equations, 264:5 (2018), 3212–3252
- A. Mogilner, L. Edelstein-Keshet, “A non-local model for a swarm”, J. Math. Biol., 38:6 (1999), 534–570
- F. Otto, “The geometry of dissipative evolution equations: the porous medium equation”, Comm. Partial Differential Equations, 26:1-2 (2001), 101–174
- B. Piccoli, F. Rossi, “Generalized Wasserstein distance and its application to transport equations with source”, Arch. Ration. Mech. Anal., 211:1 (2014), 335–358
- B. Piccoli, F. Rossi, “On properties of the generalized Wasserstein distance”, Arch. Ration. Mech. Anal., 222:3 (2016), 1339–1365
- B. Piccoli, F. Rossi, M. Tournus, A Wasserstein norm for signed measures, with application to nonlocal transport equation with source term, 2019
- А. А. Толстоногов, Дифференциальные включения в банаховом пространстве, Наука, Новосибирск, 1986, 296 с.
- A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-Valued Anal., 4:2 (1996), 173–203
- H. F. Trotter, “On the product of semi-groups of operators”, Proc. Amer. Math. Soc., 10:4 (1959), 545–551
- C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009, xxii+973 pp.
- Ю. Г. Борисович, Б. Д. Гельман, А. Д. Мышкис, В. В. Обуховский, Введение в теорию многозначных отображений и дифференциальных включений, КомКнига, М., 2005, 215 с.
- А. А. Толстоногов, “К теореме Скорца–Драгони для многозначных отображений с переменной областью определения”, Матем. заметки, 48:5 (1990), 109–120
Arquivos suplementares
