Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 213, No 1 (2022)

Global and semilocal theorems on implicit and inverse functions in Banach spaces

Arutyunov A.V., Zhukovskiy S.E.

Abstract

We consider continuous mappings between two Banach spaces that depend on a parameter with values in a topological space. These mappings are assumed to be continuously differentiable for each value of the parameter. Under normality (regularity) assumptions of the mappings under consideration, we obtain sufficient conditions for the existence of global and semilocal implicit functions. A priori estimates for solutions are given. As an application of these results, we obtain, in particular, a theorem on extending an implicit function from a given closed set to the whole parameter space and a theorem on coincidence points of mappings. Bibliography: 32 titles.
Matematicheskii Sbornik. 2022;213(1):3-45
pages 3-45 views

On the local and boundary behaviour of inverse maps on Riemannian manifolds

Ilyutko D.P., Sevost'yanov E.A.

Abstract

Results on the local behaviour of maps between Riemannian manifolds such that their inverses satisfy upper bounds on the distortion of the moduli of families of curves are obtained. For families of such maps theorems on their equicontinuity at interior points and boundary points of the domain are established. Bibliography: 30 titles.
Matematicheskii Sbornik. 2022;213(1):46-68
pages 46-68 views

Nonlocal balance equations with parameters in the space of signed measures

Pogodaev N.I., Staritsyn M.V.

Abstract

A parametric family of nonlocal balance equations in the space of signed measures is studied. Under assumptions that cover a number of known conceptual models we establish the existence of the solution, its uniqueness and continuous dependence on the parameter and the initial distribution. Several corollaries of this theorem, which are useful for control theory, are discussed. In particular, this theorem yields the limit in the mean field of a system of ordinary differential equations, the existence of the optimal control for an assembly of trajectories, Trotter's formula for the product of semigroups of the corresponding operators, and the existence of a solution to a differential inclusion in the space of signed measures. Bibliography: 33 titles.
Matematicheskii Sbornik. 2022;213(1):69-94
pages 69-94 views

On singular log Calabi-Yau compactifications of Landau-Ginzburg models

Przyjalkowski V.V.

Abstract

We consider the procedure that constructs log Calabi-Yau compactifications of weak Landau-Ginzburg models of Fano varieties. We apply it to del Pezzo surfaces and coverings of projective spaces of index $1$. For coverings of degree greater than $2$ the log Calabi-Yau compactification is singular; moreover, no smooth projective log Calabi-Yau compactification exists. We also prove, in the cases under consideration, the conjecture that the number of components of the fibre over infinity is equal to the dimension of an anticanonical system of the Fano variety. Bibliography: 46 titles.
Matematicheskii Sbornik. 2022;213(1):95-118
pages 95-118 views

More about sparse halves in triangle-free graphs

Razborov A.A.

Abstract

One of Erdős's conjectures states that every triangle-free graph on $n$ vertices has an induced subgraph on $n/2$ vertices with at most $n^2/50$ edges. We report several partial results towards this conjecture. In particular, we establish the new bound $27n^2/1024$ on the number of edges in the general case. We completely prove the conjecture for graphs of girth $\geq 5$, for graphs with independence number $\geq 2n/5$ and for strongly regular graphs. Each of these three classes includes both known (conjectured) extremal configurations, the 5-cycle and the Petersen graph. Bibliography: 21 titles.
Matematicheskii Sbornik. 2022;213(1):119-140
pages 119-140 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».