Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study billiards on compact connected domains in $\mathbb{R}^3$ bounded by a finite number of confocal quadrics meeting in dihedral angles equal to ${\pi}/{2}$. Billiards in such domains are integrable due to having three first integrals in involution inside the domain. We introduce two equivalence relations: combinatorial equivalence of billiard domains determined by the structure of their boundaries, and weak equivalence of the corresponding billiard systems on them. Billiard domains in $\mathbb{R}^3$ are classified with respect to combinatorial equivalence, resulting in 35 pairwise nonequivalent classes. For each of these obtained classes, we look for the homeomorphism class of the nonsingular isoenergy 5-manifold, and we show this to be one of three types: either $S^5$, or $S^1\times S^4$, or $S^2\times S^3$. We obtain 24 classes of pairwise nonequivalent (with respect to weak equivalence) Liouville foliations of billiards on these domains restricted to a nonsingular energy level. We also define bifurcation atoms of three-dimensional tori corresponding to the arcs of the bifurcation diagram. Bibliography: 59 titles.

About the authors

Gleb Vladimirovich Belozerov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics

References

  1. Дж. Д. Биркгоф, Динамические системы, Изд. дом “Удмуртский университет”, Ижевск, 1999, 408 с.
  2. В. В. Козлов, Д. В. Трещeв, Биллиарды. Генетическое введение в динамику систем с ударами, Изд-во Моск. ун-та, М., 1991, 168 с.
  3. С. Табачников, Геометрия и биллиарды, НИЦ “Регулярная и хаотическая динамика”, Ин-т компьютерных исследований, М.–Ижевск, 2011, 180 с.
  4. V. Dragovic, M. Radnovic, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494
  5. В. Драгович, М. Раднович, Интегрируемые биллиарды, квадрики и многомерные поризмы Понселе, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2010, 338 с.
  6. В. В. Фокичева, “Описание особенностей системы “биллиард в эллипсе” ”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2012, № 5, 31–34
  7. В. В. Фокичева, “Описание особенностей системы бильярда в областях, ограниченных софокусными эллипсами или гиперболами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2014, № 4, 18–27
  8. В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176
  9. В. В. Ведюшкина, “Слоение Лиувилля невыпуклых топологических биллиардов”, Докл. РАН, 478:1 (2018), 7–11
  10. В. В. Ведюшкина, “Инварианты Фоменко–Цишанга невыпуклых топологических биллиардов”, Матем. сб., 210:3 (2019), 17–74
  11. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67
  12. Nguyen Tien Zung, “Symplectic topology of integrable Hamiltonian systems. II. Topological classification”, Compositio Math., 138:2 (2003), 125–156
  13. А. Т. Фоменко, “Топологические инварианты гамильтоновых систем, интегрируемых по Лиувиллю”, Функц. анализ и его прил., 22:4 (1988), 38–51
  14. A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 1–35
  15. А. Т. Фоменко, “Теория бордизмов интегрируемых гамильтоновых невырожденных систем с двумя степенями свободы. Новый топологический инвариант многомерных интегрируемых систем”, Изв. АН СССР. Сер. матем., 55:4 (1991), 747–779
  16. М. П. Харламов, П. Е. Рябов, “Топологический атлас волчка Ковалевской в двойном поле”, Фундамент. и прикл. матем., 20:2 (2015), 185–230
  17. А. Т. Фоменко, Х. Цишанг, “Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы”, Изв. АН СССР. Сер. матем., 54:3 (1990), 546–575
  18. А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
  19. А. В. Болсинов, В. С. Матвеев, А. Т. Фоменко, “Двумерные римановы метрики с интегрируемым геодезическим потоком. Локальная и глобальная геометрия”, Матем. сб., 189:10 (1998), 5–32
  20. Е. Н. Селиванова, “Классификация геодезических потоков лиувиллевых метрик на двумерном торе с точностью до топологической эквивалентности”, Матем. сб., 183:4 (1992), 69–86
  21. В. В. Калашников, “Топологическая классификация квадратично-интегрируемых геодезических потоков на двумерном торе”, УМН, 50:1(301) (1995), 201–202
  22. Е. О. Кантонистова, “Топологическая классификация интегрируемых гамильтоновых систем на поверхностях вращения в потенциальном поле”, Матем. сб., 207:3 (2016), 47–92
  23. Д. С. Тимонина, “Лиувиллева классификация интегрируемых геодезических потоков на торе вращения в потенциальном поле”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2017, № 3, 35–43
  24. A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146
  25. А. В. Болсинов, П. Х. Рихтер, А. Т. Фоменко, “Метод круговых молекул и топология волчка Ковалевской”, Матем. сб., 191:2 (2000), 3–42
  26. П. В. Морозов, “Лиувиллева классификация интегрируемых систем случая Клебша”, Матем. сб., 193:10 (2002), 113–138
  27. П. В. Морозов, “Топология слоений Лиувилля случаев интегрируемости Стеклова и Соколова уравнений Кирхгофа”, Матем. сб., 195:3 (2004), 69–114
  28. П. В. Морозов, “Вычисление инвариантов Фоменко–Цишанга в интегрируемом случае Ковалевской–Яхьи”, Матем. сб., 198:8 (2007), 59–82
  29. Н. С. Славина, “Топологическая классификация систем типа Ковалевской–Яхьи”, Матем. сб., 205:1 (2014), 105–160
  30. Е. А. Кудрявцева, А. А. Ошемков, “Бифуркации интегрируемых механических систем с магнитным полем на поверхностях вращения”, Чебышевский сб., 21:2 (2020), 244–265
  31. И. К. Козлов, “Топология слоения Лиувилля для интегрируемого случая Ковалевской на алгебре Ли $mathrm{so}(4)$”, Матем. сб., 205:4 (2014), 79–120
  32. В. А. Кибкало, “Топология аналога случая интегрируемости Ковалевской на алгебре Ли $operatorname{so}(4)$ при нулевой постоянной площадей”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 3, 46–50
  33. V. Kibkalo, “Topological analysis of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra $mathrm{so}(4)$”, Lobachevskii J. Math., 39:9 (2018), 1396–1399
  34. В. А. Кибкало, “Топологическая классификация слоений Лиувилля для интегрируемого случая Ковалевской на алгебре Ли $so(4)$”, Матем. сб., 210:5 (2019), 3–40
  35. V. Kibkalo, “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $so(3, 1)$”, Topology Appl., 275 (2020), 107028, 10 pp.
  36. В. В. Фокичева, А. Т. Фоменко, “Интегрируемые биллиарды моделируют важные интегрируемые случаи динамики твердого тела”, Докл. РАН, 465:2 (2015), 150–153
  37. В. В. Ведюшкина, “Слоение Лиувилля бильярдной книжки, моделирующей случай Горячева–Чаплыгина”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 1, 64–68
  38. В. В. Ведюшкина, А. Т. Фоменко, И. С. Харчева, “Моделирование невырожденных бифуркаций замыканий решений интегрируемых систем с двумя степенями свободы интегрируемыми топологическими биллиардами”, Докл. РАН, 479:6 (2018), 607–610
  39. В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56
  40. В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки реализуют все базы слоений Лиувилля интегрируемых гамильтоновых систем”, Матем. сб., 212:8 (2021), 89–150
  41. В. В. Ведюшкина, В. А. Кибкало, А. Т. Фоменко, “Топологическое моделирование интегрируемых систем биллиардами: реализация числовых инвариантов”, Докл. РАН. Мат. информ. проц. упр., 493:1 (2020), 9–12
  42. В. В. Ведюшкина, В. А. Кибкало, “Реализация бильярдами числового инварианта расслоения Зейферта интегрируемых систем”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 4, 22–28
  43. В. В. Ведюшкина, “Локальное моделирование бильярдами слоений Лиувилля: реализация реберных инвариантов”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2021, № 2, 28–32
  44. В. А. Кибкало, “Биллиарды с потенциалом моделируют ряд четырехмерных особенностей интегрируемых систем”, Современные проблемы математики и механики, Материалы международной конференции, посвященной 80-летию академика РАН В. А. Садовничего (Москва, 2019), т. 2, МАКС Пресс, М., 2019, 563–566
  45. A. T. Fomenko, V. A. Kibkalo, “Saddle singularities in integrable Hamiltonian systems: examples and algorithms”, Contemporary approaches and methods in fundamental mathematics and mechanics, Underst. Complex Syst., Springer, Cham, 2021, 3–26
  46. В. В. Ведюшкина, “Интегрируемые биллиарды реализуют торические слоения на линзовых пространствах и 3-торе”, Матем. сб., 211:2 (2020), 46–73
  47. В. А. Кибкало, А. Т. Фоменко, И. С. Харчева, “Реализация интегрируемых гамильтоновых систем биллиардными книжками”, Тр. ММО, 82, № 2, 2021 (в печати)
  48. И. Ф. Кобцев, “Эллиптический биллиард в поле потенциальных сил: классификация движений, топологический анализ”, Матем. сб., 211:7 (2020), 93–120
  49. С. Е. Пустовойтов, “Топологический анализ биллиарда в эллиптическом кольце в потенциальном поле”, Фундамент. и прикл. матем., 22:6 (2019), 201–225
  50. С. Е. Пустовойтов, “Топологический анализ биллиарда, ограниченного софокусными квадриками, в потенциальном поле”, Матем. сб., 212:2 (2021), 81–105
  51. A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55
  52. Е. Е. Каргинова, “Биллиарды, ограниченные дугами софокусных квадрик на плоскости Минковского”, Матем. сб., 211:1 (2020), 3–31
  53. В. В. Ведюшкина, А. Т. Фоменко, “Силовые эволюционные биллиарды и биллиардная эквивалентность случая Эйлера и случая Лагранжа”, Докл. РАН. Мат. информ. проц. упр., 496:1 (2021), 5–9
  54. А. А. Глуцюк, “О двумерных полиномиально интегрируемых бильярдах на поверхностях постоянной кривизны”, Докл. РАН, 481:6 (2018), 594–598
  55. M. Bialy, A. E. Mironov, “Angular billiard and algebraic Birkhoff conjecture”, Adv. Math., 313 (2017), 102–126
  56. М. Бялый, А. Е. Миронов, “Полиномиальная неинтегрируемость магнитных бильярдов на сфере и гиперболической плоскости”, УМН, 74:2(446) (2019), 3–26
  57. A. Avila, J. De Simoi, V. Kaloshin, “An integrable deformation of an ellipse of small eccentricity is an ellipse”, Ann. of Math. (2), 184:2 (2016), 527–558
  58. V. Kaloshin, A. Sorrentino, “On the local Birkhoff conjecture for convex billiards”, Ann. of Math. (2), 188:1 (2018), 315–380
  59. И. С. Харчева, “Изоэнергетические многообразия интегрируемых бильярдных книжек”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 4, 12–22

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Belozerov G.V.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».