Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 213, No 2 (2022)

Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space

Belozerov G.V.

Abstract

We study billiards on compact connected domains in $\mathbb{R}^3$ bounded by a finite number of confocal quadrics meeting in dihedral angles equal to ${\pi}/{2}$. Billiards in such domains are integrable due to having three first integrals in involution inside the domain. We introduce two equivalence relations: combinatorial equivalence of billiard domains determined by the structure of their boundaries, and weak equivalence of the corresponding billiard systems on them. Billiard domains in $\mathbb{R}^3$ are classified with respect to combinatorial equivalence, resulting in 35 pairwise nonequivalent classes. For each of these obtained classes, we look for the homeomorphism class of the nonsingular isoenergy 5-manifold, and we show this to be one of three types: either $S^5$, or $S^1\times S^4$, or $S^2\times S^3$. We obtain 24 classes of pairwise nonequivalent (with respect to weak equivalence) Liouville foliations of billiards on these domains restricted to a nonsingular energy level. We also define bifurcation atoms of three-dimensional tori corresponding to the arcs of the bifurcation diagram. Bibliography: 59 titles.
Matematicheskii Sbornik. 2022;213(2):3-36
pages 3-36 views

A necessary and sufficient condition for the existence of simple closed geodesics on regular tetrahedra in spherical space

Borisenko A.A.

Abstract

A necessary and sufficient condition is obtained for the existence of a simple closed geodesic of type $(p,q)$ on a regular tetrahedron in spherical space. Bibliography: 6 titles.
Matematicheskii Sbornik. 2022;213(2):37-49
pages 37-49 views

A hyperbolicity criterion for a class of diffeomorphisms of an infinite-dimensional torus

Glyzin S.D., Kolesov A.Y.

Abstract

On an infinite-dimensional torus $\mathbb{T}^{\infty} = E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional real Banach space and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon \mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ equal to sums of invertible bounded linear operators preserving $\mathbb{Z}^{\infty}$ and $C^1$-smooth periodic additives. Necessary and sufficient conditions ensuring that such maps are hyperbolic (that is, are Anosov diffeomorphisms) are obtained. Bibliography: 15 titles.
Matematicheskii Sbornik. 2022;213(2):50-95
pages 50-95 views

Vinogradov's sieve and an estimate for an incomplete Kloosterman sum

Korolev M.A.

Abstract

We refine a bound for a short Kloosterman sum with a prime modulus $q$ using the so-called Vinogradov sieve. The number of terms in the sum can be less than an arbitrarily small fixed power of $q$. Bibliography: 26 titles.
Matematicheskii Sbornik. 2022;213(2):96-114
pages 96-114 views

Values of the $\mathfrak{sl}_2$ weight system on a family of graphs that are not the intersection graphs of chord diagrams

Zinova P.A.

Abstract

The Chmutov-Lando theorem claims that the value of a weight system (a function on the chord diagrams that satisfies the four-term Vassiliev relations) corresponding to the Lie algebra $\mathfrak{sl}_2$ depends only on the intersection graph of the chord diagram. We compute the values of the $\mathfrak{sl}_2$ weight system at the graphs in several infinite series, which are the joins of a graph with a small number of vertices and a discrete graph. In particular, we calculate these values for a series in which the initial graph is the cycle on five vertices; the graphs in this series, apart from the initial one, are not intersection graphs. We also derive a formula for the generating functions of the projections of graphs equal to the joins of an arbitrary graph and a discrete graph to the subspace of primitive elements of the Hopf algebra of graphs. Using the formula thus obtained, we calculate the values of the $\mathfrak{sl}_2$ weight system at projections of the graphs of the indicated form onto the subspace of primitive elements. Our calculations confirm Lando's conjecture concerning the values of the $\mathfrak{sl}_2$ weight system at projections onto the subspace of primitives. Bibliography: 17 titles.
Matematicheskii Sbornik. 2022;213(2):115-148
pages 115-148 views

Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces

Tsar'kov I.G.

Abstract

Generalized $n$-piecewise functions constructed from given monotone path-connected boundedly compact subsets of the space $C[a,b]$ are studied. They are shown to be monotone path-connected suns. In finite-dimensional polyhedral spaces, luminosity points of sets admitting a lower semicontinuous selection of the metric projection operator are investigated. An example of a non-$B$-connected sun in a four-dimensional polyhedral normed space is constructed. Bibliography: 14 titles.
Matematicheskii Sbornik. 2022;213(2):149-166
pages 149-166 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».