On properties and error of 2nd order parabolic and hyperbolic perturbations of a 1st order symmetric hyperbolic system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Cauchy problems are studied for a first-order multidimensional symmetric linear hyperbolic system of equations with variable coefficients and its singular perturbations that are second-order strongly parabolic and hyperbolic systems of equations with a small parameter τ>0 multiplying the second derivatives with respect to x and t. The existence and uniqueness of weak solutions of all three systems and τ-uniform estimates for solutions of systems with perturbations are established. Estimates for the difference of solutions of the original system and the systems with perturbations are given, including ones of order O(τα/2) in the norm of C(0,T;L2(Rn)), for an initial function w0 in the Sobolev space Hα(Rn)α=1,2, or the Nikolskii space Hα2(Rn)0<α<2α1, and under appropriate assumptions on the free term of the first-order system. For α=1/2 a wide class of discontinuous functions w0 is covered. Estimates for derivatives of any order with respect to x for solutions and of order O(τα/2) for their differences are also deduced. Applications of the results to the first-order system of gas dynamic equations linearized at a constant solution and to its perturbations, namely, the linearized second-order parabolic and hyperbolic quasi-gasdynamic systems of equations, are presented.

About the authors

Alexander Anatol'evich Zlotnik

HSE University; Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

Author for correspondence.
Email: alexander.zlotnik@gmail.com
Doctor of physico-mathematical sciences, Professor

Boris Nikolaevich Chetverushkin

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

Email: office@keldysh.ru
Doctor of physico-mathematical sciences, Professor

References

  1. Б. Н. Четверушкин, Кинетические схемы и квазигазодинамическая система уравнений, МАКС Пресс, М., 2004, 328 с.
  2. Т. Г. Елизарова, Квазигазодинамические уравнения и методы расчета вязких течений, Научный мир, М., 2007, 349 с.
  3. Б. Н. Четверушкин, “Гиперболическая квазигазодинамическая система”, Матем. моделирование, 30:2 (2018), 81–98
  4. Л. К. Эванс, Уравнения с частными производными, Тамара Рожковская, Новосибирск, 2003, 562 с.
  5. Дж. Коул, Методы возмущений в прикладной математике, Мир, М., 1972, 274 с.
  6. J. Genet, M. Madaune, “Singular perturbations for a class of nonlinear hyperbolic-hyperbolic problems”, J. Math. Anal. Appl., 64:1 (1978), 1–24
  7. Л. Р. Волевич, М. Г. Джавадов, “Равномерные оценки решений гиперболических уравнений с малым параметром при старших производных”, Дифференц. уравнения, 19:12 (1983), 2082–2090
  8. A. van Harten, R. R. van Hassel, “A quasi-linear, singular perturbation problem of hyperbolic type”, SIAM J. Math. Anal., 16:6 (1985), 1258–1267
  9. S. Schochet, “Hyperbolic-hyperbolic singular limits”, Comm. Partial Differential Equations, 12:6 (1987), 589–632
  10. H. O. Fattorini, “The hyperbolic singular perturbation problem: an operator theoretic approach”, J. Differential Equations, 70:1 (1987), 1–41
  11. E. M. de Jager, F. Jiang, The theory of singular perturbations, North-Holland Ser. Appl. Math. Mech., 42, North-Holland Publishing Co., Amsterdam, 1996, xii+340 pp.
  12. C. Мизохата, Теория уравнений с частными прооизводными, Мир, М., 1977, 504 с.
  13. С. К. Годунов, Уравнения математической физики, 2-е изд., испр. и доп., Наука, М., 1979, 391 с.
  14. S. Benzoni-Gavage, D. Serre, Multidimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, Oxford, 2007, xxvi+508 pp.
  15. С. М. Никольский, Приближение функций многих переменных и теоремы вложения, Наука, М., 1969, 480 с.
  16. А. А. Злотник, Б. Н. Четверушкин, “О параболичности квазигазодинамической системы уравнений, ее гиперболической 2-го порядка модификации и устойчивости малых возмущений для них”, Ж. вычисл. матем. и матем. физ., 48:3 (2008), 445–472
  17. А. А. Злотник, Б. Н. Четверушкин, “Устойчивость неявных разностных схем для линеаризованной гиперболической квазигазодинамической системы уравнений”, Дифференц. уравнения, 56:7 (2020), 936–947
  18. А. А. Злотник, Б. Н. Четверушкин, “О параболическом и гиперболическом 2-го порядка возмущениях гиперболической системы 1-го порядка”, Докл. РАН. Матем., информ., проц. упр., 506 (2022), 9–15
  19. H. O. Fattorini, “Singular perturbation and boundary layer for an abstract Cauchy problem”, J. Math. Anal. Appl., 97:2 (1983), 529–571
  20. А. З. Ишмухаметов, “Управляемость гиперболических систем при сингулярных возмущениях”, Дифференц. уравнения, 36:2 (2000), 241–250
  21. Т. Е. Моисеев, Е. Е. Мышецкая, В. Ф. Тишкин, “О близости решений невозмущенных и гиперболизованных уравнений теплопроводности для разрывных начальных данных”, Докл. РАН, 481:6 (2018), 605–609
  22. B. N. Chetverushkin, A. A. Zlotnik, “On a hyperbolic perturbation of a parabolic initial-boundary value problem”, Appl. Math. Lett., 83 (2018), 116–122
  23. О. А. Ладыженская, В. А. Солонников, Н. Н. Уральцева, Линейные и квазилинейные уравнения параболического типа, Наука, М., 1967, 736 с.
  24. О. А. Ладыженская, Краевые задачи математической физики, Наука, М., 1973, 407 с.
  25. Л. К. Эванс, Р. Ф. Гариепи, Теория меры и тонкие свойства функций, Научная книга (ИДМИ), Новосибирск, 2002, 216 с.
  26. Х. Гаевский, К. Грегер, К. Захариас, Нелинейные операторные уравнения и операторные дифференциальные уравнения, Мир, М., 1978, 336 с.
  27. А. А. Злотник, Б. Н. Четверушкин, “Спектральные условия устойчивости явной трехслойной разностной схемы для многомерного уравнения переноса с возмущениями”, Дифференц. уравнения, 57:7 (2021), 922–931
  28. Й. Берг, Й. Лефстрем, Интерполяционные пространства. Введение, Мир, M., 1980, 264 с.
  29. B. N. Chetverushkin, A. A. Zlotnik, “On some properties of multidimensional hyperbolic quasi-gasdynamic systems of equations”, Russ. J. Math. Phys., 24:3 (2017), 299–309
  30. А. А. Злотник, Проекционно-разностные методы для нестационарных задач с негладкими данными, Дисс. … канд. физ.-матем. наук, МГУ, М., 1979
  31. L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Lect. Notes Unione Mat. Ital., 3, Springer, Berlin; UMI, Bologna, 2007, xxvi+218 pp.
  32. М. C. Агранович, Соболевские пространства, их обобщения и эллиптические задачи в областях с гладкой и липшицевой границей, МЦНМО, М., 2013, 378 с.
  33. A. Zlotnik, T. Lomonosov, “$L^2$-dissipativity of the linearized explicit finite-difference scheme with a kinetic regularization for 2D and 3D gas dynamics system of equations”, Appl. Math. Lett., 103 (2020), 106198, 7 pp.
  34. А. А. Злотник, А. С. Федченко, “Свойства агрегированной квазигазодинамической системы уравнений гомогенной газовой смеси”, Докл. РАН. Матем., информ., проц. упр., 501 (2021), 31–37

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Zlotnik A.A., Chetverushkin B.N.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».