Collocation approximation by deep neural ReLU networks for parametric and stochastic PDEs with lognormal inputs
- Autores: Dinh D.1
-
Afiliações:
- Vietnam National University
- Edição: Volume 214, Nº 4 (2023)
- Páginas: 38-75
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133511
- DOI: https://doi.org/10.4213/sm9791
- ID: 133511
Citar
Resumo
Sobre autores
Dũng Dinh
Vietnam National University
Email: dinhzung@gmail.com
Doctor of physico-mathematical sciences, Professor
Bibliografia
- M. Ali, A. Nouy, “Approximation of smoothness classes by deep rectifier networks”, SIAM J. Numer. Anal., 59:6 (2021), 3032–3051
- R. Arora, A. Basu, P. Mianjy, A. Mukherjee, Understanding deep neural networks with rectified linear units, Electronic colloquium on computational complexity, report No. 98, 2017, 21 pp.
- M. Bachmayr, A. Cohen, Dinh Dũng, Ch. Schwab, “Fully discrete approximation of parametric and stochastic elliptic PDEs”, SIAM J. Numer. Anal., 55:5 (2017), 2151–2186
- M. Bachmayr, A. Cohen, R. DeVore, G. Migliorati, “Sparse polynomial approximation of parametric elliptic PDEs. Part II: Lognormal coeffcients”, ESAIM Math. Model. Numer. Anal., 51:1 (2017), 341–363
- M. Bachmayr, A. Cohen, G. Migliorati, “Sparse polynomial approximation of parametric elliptic PDEs. Part I: Affine coefficients”, ESAIM Math. Model. Numer. Anal., 51:1 (2017), 321–339
- A. R. Barron, “Complexity regularization with application to artificial neural networks”, Nonparametric functional estimation and related topics (Spetses, 1990), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 335, Kluwer Acad. Publ., Dordrecht, 1991, 561–576
- A. Chkifa, A. Cohen, R. DeVore, Ch. Schwab, “Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs”, ESAIM Math. Model. Numer. Anal., 47:1 (2013), 253–280
- A. Chkifa, A. Cohen, Ch. Schwab, “High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs”, Found. Comput. Math., 14:4 (2014), 601–633
- A. Chkifa, A. Cohen, Ch. Schwab, “Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs”, J. Math. Pures Appl. (9), 103:2 (2015), 400–428
- A. Cohen, R. DeVore, “Approximation of high-dimensional parametric PDEs”, Acta Numer., 24 (2015), 1–159
- A. Cohen, R. DeVore, Ch. Schwab, “Convergence rates of best $N$-term Galerkin approximations for a class of elliptic sPDEs”, Found. Comput. Math., 10:6 (2010), 615–646
- A. Cohen, R. DeVore, Ch. Schwab, “Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE's”, Anal. Appl. (Singap.), 9:1 (2011), 11–47
- G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Math. Control Signals Systems, 2:4 (1989), 303–314
- Динь Зунг, “Линейная совместная коллокационная аппроксимация для параметрических и стохастических эллиптических дифференциальных уравнений с частными производными”, Матем. сб., 210:4 (2019), 103–127
- Dinh Dũng, “Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs”, ESAIM Math. Model. Numer. Anal., 55:3 (2021), 1163–1198
- Dinh Dũng, Van Kien Nguyen, “Deep ReLU neural networks in high-dimensional approximation”, Neural Netw., 142 (2021), 619–635
- Dinh Dũng, Van Kien Nguyen, Duong Thanh Pham, Deep ReLU neural network approximation of parametric and stochastic elliptic PDEs with lognormal inputs
- Dinh Dũng, Van Kien Nguyen, Ch. Schwab, J. Zech, Analyticity and sparsity in uncertainty quantification for PDEs with Gaussian random field inputs
- Dinh Dũng, Van Kien Nguyen, Mai Xuan Thao, “Computation complexity of deep ReLU neural networks in high-dimensional approximation”, J. Comp. Sci. Cybern., 37:3 (2021), 292–320
- I. Daubechies, R. DeVore, S. Foucart, B. Hanin, G. Petrova, “Nonlinear approximation and (deep) ReLU networks”, Constr. Approx., 55:1 (2022), 127–172
- R. DeVore, B. Hanin, G. Petrova, “Neural network approximation”, Acta Numer., 30 (2021), 327–444
- Weinan E, Qingcan Wang, “Exponential convergence of the deep neural network approximation for analytic functions”, Sci. China Math., 61:10 (2018), 1733–1740
- D. Elbrächter, P. Grohs, A. Jentzen, Ch. Schwab, DNN expression rate analysis of high-dimensional PDEs: application to option pricing, SAM res. rep. 2018-33, Seminar for Applied Mathematics, ETH Zürich, Zürich, 2018, 50 pp.
- O. G. Ernst, B. Sprungk, L. Tamellini, “Convergence of sparse collocation for functions of countably many Gaussian random variables (with application to elliptic PDEs)”, SIAM J. Numer. Anal., 56:2 (2018), 877–905
- K.-I. Funahashi, “Approximate realization of identity mappings by three-layer neural networks”, Electron. Comm. Japan Part III Fund. Electron. Sci., 73:11 (1990), 61–68
- M. Geist, P. Petersen, M. Raslan, R. Schneider, G. Kutyniok, “Numerical solution of the parametric diffusion equation by deep neural networks”, J. Sci. Comput., 88:1 (2021), 22, 37 pp.
- L. Gonon, Ch. Schwab, Deep ReLU network expression rates for option prices in high-dimensional, exponential Levy models, SAM res. rep. 2020-52 (rev. 1), Seminar for Applied Mathematics, ETH Zürich, Zürich, 2021, 35 pp.
- L. Gonon, Ch. Schwab, Deep ReLU neural network approximation for stochastic differential equations with jumps, SAM res. rep. 2021-08, Seminar for Applied Mathematics, ETH Zürich, Zürich, 2021, 35 pp.
- R. Gribonval, Kutyniok, M. Nielsen, F. Voigtländer, “Approximation spaces of deep neural networks”, Constr. Approx., 55:1 (2022), 259–367
- P. Grohs, L. Herrmann, “Deep neural network approximation for high-dimensional elliptic PDEs with boundary conditions”, IMA J. Numer. Anal., 42:3 (2022), 2055–2082
- D. Elbrachter, D. Perekrestenko, P. Grohs, H. Bölcskei, “Deep neural network approximation theory”, IEEE Trans. Inform. Theory, 67:5 (2021), 2581–2623
- I. Gühring, G. Kutyniok, P. Petersen, “Error bounds for approximations with deep ReLU neural networks in $W^{s,p}$ norms”, Anal. Appl. (Singap.), 18:5 (2020), 803–859
- L. Herrmann, J. A. A. Opschoor, Ch. Schwab, Constructive deep ReLU neural network approximation, SAM res. rep. 2021-04, Seminar for Applied Mathematics, ETH Zürich, Zürich, 2021, 32 pp.
- L. Herrmann, Ch. Schwab, J. Zech, “Deep neural network expression of posterior expectations in Bayesian PDE inversion”, Inverse Problems, 36:12 (2020), 125011, 32 pp.
- E. Hewitt, K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965, vii+476 pp.
- Viet Ha Hoang, Ch. Schwab, “$N$-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs”, Math. Models Methods Appl. Sci., 24:4 (2014), 797–826
- K. Hornik, M. Stinchcombe, H. White, “Multilayer feedforward networks are universal approximators”, Neural Netw., 2:5 (1989), 359–366
- G. Kutyniok, P. Petersen, M. Raslan, R. Schneider, “A theoretical analysis of deep neural networks and parametric PDEs”, Constr. Approx., 55:1 (2022), 73–125
- Jianfeng Lu, Zuowei Shen, Haizhao Yang, Shijun Zhang, “Deep network approximation for smooth functions”, SIAM J. Math. Anal., 53:5 (2021), 5465–5506
- D. M. Matjila, “Bounds for Lebesgue functions for Freud weights”, J. Approx. Theory, 79:3 (1994), 385–406
- D. M. Matjila, “Convergence of Lagrange interpolation for Freud weights in weighted $L_p(mathbb R)$, $0 < P le 1$”, Nonlinear numerical methods and rational approximation. II (Wilrijk, 1993), Math. Appl., 296, Kluwer Acad. Publ., Dordrecht, 1994, 25–35
- H. N. Mhaskar, “Neural networks for optimal approximation of smooth and analytic functions”, Neural Comput., 8 (1996), 164–177
- H. Montanelli, Qiang Du, “New error bounds for deep ReLU networks using sparse grids”, SIAM J. Math. Data Sci., 1:1 (2019), 78–92
- G. Montufar, R. Pascanu, Kyunghyun Cho, Yoshua Bengio, “On the number of linear regions of deep neural networks”, NIPS 2014, Adv. Neural Inf. Process. Syst., 27, MIT Press, Cambridge, MA, 2014, 2924–2932
- J. A. A. Opschoor, Ch. Schwab, J. Zech, Deep learning in high dimension: ReLU network expression rates for Bayesian PDE inversion, SAM res. rep. 2020-47, Seminar for Applied Mathematics, ETH Zürich, Zürich, 2020, 50 pp.
- J. A. A. Opschoor, Ch. Schwab, J. Zech, “Exponential ReLU DNN expression of holomorphic maps in high dimension”, Constr. Approx., 55:1 (2022), 537–582
- P. C. Petersen, Neural network theory, 2022, 60 pp.
- P. Petersen, F. Voigtlaender, “Optimal approximation of piecewise smooth functions using deep ReLU neural networks”, Neural Netw., 108 (2018), 296–330
- Ch. Schwab, J. Zech, “Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ”, Anal. Appl. (Singap.), 17:1 (2019), 19–55
- Ch. Schwab, J. Zech, Deep learning in high dimension: neural network approximation of analytic functions in $L^2(mathbb R^d, gamma_d)$
- Zuowei Shen, Haizhao Yang, Shijun Zhang, “Deep network approximation characterized by number of neurons”, Commun. Comput. Phys., 28:5 (2020), 1768–1811
- J. Sirignano, K. Spiliopoulos, “DGM: a deep learning algorithm for solving partial differential equations”, J. Comput. Phys., 375 (2018), 1339–1364
- T. Suzuki, Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality, ICLR 2019: International conference on learning representations (New Orleans, LA, 2019)
- J. Szabados, “Weighted Lagrange and Hermite–Fejer interpolation on the real line”, J. Inequal. Appl., 1:2 (1997), 99–123
- Г. Сегe, Ортогональные многочлены, Физматлит, М., 1962, 500 с.
- M. Telgarsky, Representation benefits of deep feedforward networks
- M. Telgrasky, “Benefits of depth in neural nets”, 29th annual conference on learning theory (Columbia Univ., New York, NY, 2016), Proceedings of Machine Learning Research (PMLR), 49, 2016, 1517–1539
- R. K. Tripathy, I. Bilionis, “Deep UQ: learning deep neural network surrogate models for high dimensional uncertainty quantification”, J. Comput. Phys., 375 (2018), 565–588
- D. Yarotsky, “Error bounds for approximations with deep ReLU networks”, Neural Netw., 94 (2017), 103–114
- D. Yarotsky, “Optimal approximation of continuous functions by very deep ReLU networks”, 31st annual conference on learning theory, Proceedings of Machine Learning Research (PMLR), 75, 2018, 639–649
- J. Zech, Dinf Dũng, Ch. Schwab, “Multilevel approximation of parametric and stochastic PDES”, Math. Models Methods Appl. Sci., 29:9 (2019), 1753–1817
- J. Zech, Ch. Schwab, “Convergence rates of high dimensional Smolyak quadrature”, ESAIM Math. Model. Numer. Anal., 54:4 (2020), 1259–1307
Arquivos suplementares
