A refinement of Heath-Browns theorem on quadratic forms
- Authors: Vlăduţ S.G.1,2, Dymov A.V.3,4,5, Kuksin S.B.6,7,3, Maiocchi A.8
-
Affiliations:
- Aix-Marseille Université
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
- Steklov Mathematical Institute of Russian Academy of Sciences
- HSE University
- Skolkovo Institute of Science and Technology
- Paris Sorbonne University
- Peoples' Friendship University of Russia
- Università degli Studi di Milano-Bicocca
- Issue: Vol 214, No 5 (2023)
- Pages: 18-68
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133517
- DOI: https://doi.org/10.4213/sm9711
- ID: 133517
Cite item
Abstract
In his paper from 1996 on quadratic forms Heath-Brown developed a version of the circle method to count points in the intersection of an unbounded quadric with a lattice of small period, when each point is assigned a weight, and approximated this quantity by the integral of the weight function against a measure on the quadric. The weight function is assumed to be C∞0-smooth and vanish near the singularity of the quadric. In our work we allow the weight function to be finitely smooth, not to vanish at the singularity and have an explicit decay at infinity.
The paper uses only elementary number theory and is available to readers with no number-theoretic background.
Keywords
About the authors
Sergei Georgievich Vlăduţ
Aix-Marseille Université; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
Email: vladut@iml.univ-mrs.fr
Candidate of physico-mathematical sciences
Andrey Victorovich Dymov
Steklov Mathematical Institute of Russian Academy of Sciences; HSE University; Skolkovo Institute of Science and Technology
Email: dymov@mi-ras.ru
PhD, no status
Sergei Borisovich Kuksin
Paris Sorbonne University; Peoples' Friendship University of Russia; Steklov Mathematical Institute of Russian Academy of Sciences
Author for correspondence.
Email: vladut@iml.univ-mrs.fr
Doctor of physico-mathematical sciences, Professor
Alberto Maiocchi
Università degli Studi di Milano-Bicocca
Email: alberto.maiocchi@unimib.it
References
- D. R. Heath-Brown, “A new form of the circle method, and its application to quadratic forms”, J. Reine Angew. Math., 1996:481 (1996), 149–206
- W. Duke, J. Friedlander, H. Iwaniec, “Bounds for automorphic $L$-function”, Invent. Math., 112:1 (1993), 1–8
- H. Iwaniec, “The circle method and the Fourier coefficients of modular forms”, Number theory and related topics (Bombay, 1988), Tata Inst. Fund. Res. Stud. Math., 12, Tata Inst. Fund. Res., Bombay, 1989, 47–55
- Ж.-П. Серр, Курс арифметики, Мир, М., 1972, 184 с.
- А. А. Карацуба, Основы аналитической теории чисел, 2-е изд., Наука, М., 1983, 240 с.
- A. Dymov, S. Kuksin, A. Maiocchi, S. Vlăduţ, The large-period limit for equations of discrete turbulence
- T. Buckmaster, P. Germain, Z. Hani, J. Shatah, “Effective dynamics of the nonlinear Schrödinger equation on large domains”, Comm. Pure Appl. Math., 71:7 (2018), 1407–1460
- H. L. Eliasson, B. Grebert, S. B. Kuksin, “KAM for the nonlinear beam equation”, Geom. Funct. Anal., 26:6 (2016), 1588–1715
- J. R. Getz, “Secondary terms in asymptotics for the number of zeros of quadratic forms over number fields”, J. Lond. Math. Soc. (2), 98:2 (2018), 275–305
- T. H. Tran, Secondary terms in asymptotics for the number of zeros of quadratic forms
- A. Dymov, S. Kuksin, “Formal expansions in stochastic model for wave turbulence. 1: Kinetic limit”, Comm. Math. Phys., 382:2 (2021), 951–1014
- I. Chavel, Riemannian geometry. A modern introduction, Cambridge Stud. Adv. Math., 98, 2nd ed., Cambridge Univ. Press, Cambridge, 2006, xvi+471 pp.
- A. Dymov, S. Kuksin, A. Maiocchi, S. Vlăduţ, Some remarks on Heath-Brown's theorem on quadratic forms
- А. Я. Хинчин, Математические основания статистической механики, Гостехиздат, М.–Л., 1943, 128 с.
- B. J. Birch, “Forms in many variables”, Proc. Roy. Soc. London Ser. A, 265:1321 (1962), 245–263
Supplementary files
