A refinement of Heath-Browns theorem on quadratic forms
- 作者: Vlăduţ S.G.1,2, Dymov A.V.3,4,5, Kuksin S.B.6,7,3, Maiocchi A.8
-
隶属关系:
- Aix-Marseille Université
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
- Steklov Mathematical Institute of Russian Academy of Sciences
- HSE University
- Skolkovo Institute of Science and Technology
- Paris Sorbonne University
- Peoples' Friendship University of Russia
- Università degli Studi di Milano-Bicocca
- 期: 卷 214, 编号 5 (2023)
- 页面: 18-68
- 栏目: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133517
- DOI: https://doi.org/10.4213/sm9711
- ID: 133517
如何引用文章
详细
作者简介
Sergei Vlăduţ
Aix-Marseille Université; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
Email: vladut@iml.univ-mrs.fr
Candidate of physico-mathematical sciences
Andrey Dymov
Steklov Mathematical Institute of Russian Academy of Sciences; HSE University; Skolkovo Institute of Science and Technology
Email: dymov@mi-ras.ru
PhD, no status
Sergei Kuksin
Paris Sorbonne University; Peoples' Friendship University of Russia; Steklov Mathematical Institute of Russian Academy of SciencesDoctor of physico-mathematical sciences, Professor
Alberto Maiocchi
Università degli Studi di Milano-Bicocca
Email: alberto.maiocchi@unimib.it
参考
- D. R. Heath-Brown, “A new form of the circle method, and its application to quadratic forms”, J. Reine Angew. Math., 1996:481 (1996), 149–206
- W. Duke, J. Friedlander, H. Iwaniec, “Bounds for automorphic $L$-function”, Invent. Math., 112:1 (1993), 1–8
- H. Iwaniec, “The circle method and the Fourier coefficients of modular forms”, Number theory and related topics (Bombay, 1988), Tata Inst. Fund. Res. Stud. Math., 12, Tata Inst. Fund. Res., Bombay, 1989, 47–55
- Ж.-П. Серр, Курс арифметики, Мир, М., 1972, 184 с.
- А. А. Карацуба, Основы аналитической теории чисел, 2-е изд., Наука, М., 1983, 240 с.
- A. Dymov, S. Kuksin, A. Maiocchi, S. Vlăduţ, The large-period limit for equations of discrete turbulence
- T. Buckmaster, P. Germain, Z. Hani, J. Shatah, “Effective dynamics of the nonlinear Schrödinger equation on large domains”, Comm. Pure Appl. Math., 71:7 (2018), 1407–1460
- H. L. Eliasson, B. Grebert, S. B. Kuksin, “KAM for the nonlinear beam equation”, Geom. Funct. Anal., 26:6 (2016), 1588–1715
- J. R. Getz, “Secondary terms in asymptotics for the number of zeros of quadratic forms over number fields”, J. Lond. Math. Soc. (2), 98:2 (2018), 275–305
- T. H. Tran, Secondary terms in asymptotics for the number of zeros of quadratic forms
- A. Dymov, S. Kuksin, “Formal expansions in stochastic model for wave turbulence. 1: Kinetic limit”, Comm. Math. Phys., 382:2 (2021), 951–1014
- I. Chavel, Riemannian geometry. A modern introduction, Cambridge Stud. Adv. Math., 98, 2nd ed., Cambridge Univ. Press, Cambridge, 2006, xvi+471 pp.
- A. Dymov, S. Kuksin, A. Maiocchi, S. Vlăduţ, Some remarks on Heath-Brown's theorem on quadratic forms
- А. Я. Хинчин, Математические основания статистической механики, Гостехиздат, М.–Л., 1943, 128 с.
- B. J. Birch, “Forms in many variables”, Proc. Roy. Soc. London Ser. A, 265:1321 (1962), 245–263
补充文件
