The theorems Levinson's type and Dynkin's problems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Исследуются вопросы, связанные с теоремами типа Левинсона–Шёберга–Волфа в комплексном и гармоническом анализе. Обсуждаются известная проблема Е. М. Дынькина об эффективной оценке мажоранты роста аналитической функции вблизи множества особенностей и двойственная в некотором смысле проблема о скорости стремления к нулю экстремальной функции в неквазианалитическом классе Карлемана в окрестности точки, где все производные функций из этого класса обращаются в нуль.Первая проблема решена В. Мацаевым и М. Содиным. В настоящей статье получено полное решение второй проблемы Е. М. Дынькина, восходящей к Бангу. Как применение получена точная асимптотическая оценка расстояния от мнимых экспонент до алгебраических полиномов в весовом пространстве непрерывных функций на вещественной прямой.Библиография: 24 названия.

Sobre autores

Ahtyar Gaisin

Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: gaisinam@mail.ru
Doctor of physico-mathematical sciences, Professor

Rashit Gaisin

Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: rashit.gajsin@mail.ru
without scientific degree, no status

Bibliografia

  1. N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., New York, 1940, viii+246 pp.
  2. В. П. Гурарий, “К теореме Н. Левинсона о нормальном семействе аналитических функций”, Исследования по линейным операторам и теории функций. I, Зап. науч. сем. ЛОМИ, 19, Изд-во “Наука”, Ленинград. отд., Л., 1970, 215–220
  3. N. Sjöberg, “Sur les minorantes subharmoniques d'une function donee”, Comptes rendus du IX congres des mathematiciens scandinaves (Helsinki, 1938), Helsingfors, 1939, 309–319
  4. T. Carleman, “Extension d'un theorème de Liouville”, Acta Math., 48:3-4 (1926), 363–366
  5. F. Wolf, “On majorants of subharmonic and analytic functions”, Bull. Amer. Math. Soc., 48:12 (1942), 925–932
  6. P. Koosis, The logarithmic integral, v. I, Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988, xvi+606 pp.
  7. Y. Domar, “On the existence of a largest subharmonic minorant of a given function”, Ark. Mat., 3:5 (1958), 429–440
  8. A. Borichev, H. Hedenmalm, “Completeness of translates in weighted spaces on the half-plane”, Acta Math., 174:1 (1995), 1–84
  9. Y. Domar, “Uniform boundedness in families related to subharmonic functions”, J. London Math. Soc. (2), 38:3 (1988), 485–491
  10. А. М. Гайсин, И. Г. Кинзябулатов, “Теорема типа Левинсона–Шeберга. Применения”, Матем. сб., 199:7 (2008), 41–62
  11. Е. М. Дынькин, “О росте аналитической функции вблизи множества ее особых точек”, Исследования по линейным операторам и теории функций. III, Зап. науч. сем. ЛОМИ, 30, Изд-во “Наука”, Ленинград. отд., Л., 1972, 158–160
  12. E. M. Dyn'kin, “The pseudoanalytic extension”, J. Anal. Math., 60 (1993), 45–70
  13. V. Matsaev, M. Sodin, “Asymptotics of Fourier and Laplace transforms in weighted spaces of analytic functions”, Алгебра и анализ, 14:4 (2002), 107–140
  14. В. Мацаев, Теоремы единственности, полноты и компактности, связанные с классической квазианалитичностью, Дисс. … канд. физ.-матем. наук, Физ.-техн. ин-т низких температур АН УССР, Харьков, 1964
  15. Е. М. Дынькин, “Функции с данной оценкой $partial f/partialoverline z$ и теорема Н. Левинсона”, Матем. сб., 89(131):2(10) (1972), 182–190
  16. N. Nikolski, “Yngve Domar's forty years in harmonic analysis”, Festschrift in honour of Lennart Carleson and Yngve Domar (Uppsala, 1993), Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., 58, Uppsala Univ., Uppsala, 1995, 45–78
  17. T. Bang, “The theory of metric spaces applied to infinitely differentiable functions”, Math. Scand., 1 (1953), 137–152
  18. С. Мандельбройт, Примыкающие ряды. Регуляризация последовательностей. Применения, ИЛ, М., 1955, 268 с.
  19. А. М. Гайсин, “Экстремальные задачи в неквазианалитических классах Карлемана. Приложения”, Матем. сб., 209:7 (2018), 44–70
  20. А. М. Гайсин, “Ряды Дирихле с вещественными коэффициентами, неограниченные на положительном луче”, Матем. сб., 198:6 (2007), 41–64
  21. А. М. Гайсин, “Условие Левинсона в теории целых функций. Эквивалентные утверждения”, Матем. заметки, 83:3 (2008), 350–360
  22. П. Кусис, Введение в теорию пространств $H^{p}$, С приложением доказательства Волффа теоремы о короне, Мир, М., 1984, 366 с.
  23. Г. М. Фихтенгольц, Курс дифференциального и интегрального исчисления, т. II, Физматлит, М., 2006, 864 с.
  24. Н. И. Ахиезер, Лекции по теории аппроксимации, 2-е изд., Наука, М., 1965, 407 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Gaisin A.M., Gaisin R.A., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».