Short $SL_2$-structures on simple Lie algebras
- Authors: Stasenko R.O.1,2
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Moscow Center for Fundamental and Applied Mathematics
- Issue: Vol 214, No 4 (2023)
- Pages: 132-180
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133522
- DOI: https://doi.org/10.4213/sm9788
- ID: 133522
Cite item
Abstract
In Vinberg's works certain non-Abelian gradings of simple Lie algebras were introduced and investigated, namely, short SO3- and SL3-structures. We investigate a different kind of these, short SL2-structures. The main results refer to the one-to-one correspondence between such structures and certain special Jordan algebras.
About the authors
Roman Olegovich Stasenko
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics
Author for correspondence.
Email: theromestasenko@yandex.ru
without scientific degree, no status
References
- E. B. Vinberg, “Non-abelian gradings of Lie algebras”, 50th seminar “Sophus Lie”, Banach Center Publ., 113, Polish Acad. Sci. Inst. Math., Warsaw, 2017, 19–38
- E. B. Vinberg, “Short $operatorname{SO}_3$-structures on simple Lie algebras and associated quasielliptic planes”, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, 213, Adv. Math. Sci., 56, Amer. Math. Soc., Providence, RI, 2005, 243–270
- A. A. Albert, “A structure theory for Jordan algebras”, Ann. of Math. (2), 48:3 (1947), 546–567
- N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., Providence, R.I., 1968, x+453 pp.
- Э. Б. Винберг, В. В. Горбацевич, А. Л. Онищик, “Строение групп и алгебр Ли”, Группы Ли и алгебры Ли – 3, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 41, ВИНИТИ, М., 1990, 5–253
- L. Conlon, “A class of variationally complete representations”, J. Differential Geometry, 7:1-2 (1972), 149–160
- D. I. Panyushev, “The exterior algebra and “spin” of an orthogonal $mathfrak{g}$-module”, Transform. Groups, 6:4 (2001), 371–396
- V. G. Kac, “Some remarks on nilpotent orbits”, J. Algebra, 64:1 (1980), 190–213
Supplementary files
