Bernstein–Szegö inequality for Riesz derivative of trigonometric polynomials in the spaces $L_p$, $0\le p\le\infty$, with the classical value of the best constant
- 作者: Leont'eva A.O.1
-
隶属关系:
- Ural Federal University named after the First President of Russia B. N. Yeltsin
- 期: 卷 214, 编号 3 (2023)
- 页面: 135-152
- 栏目: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133524
- DOI: https://doi.org/10.4213/sm9822
- ID: 133524
如何引用文章
详细
作者简介
Anastasiya Leont'eva
Ural Federal University named after the First President of Russia B. N. Yeltsin
Email: lao-imm@yandex.ru
Candidate of physico-mathematical sciences, Researcher
参考
- H. Weyl, “Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung”, Vierteljschr. Naturforsch. Ges. Zürich, 62 (1917), 296–302
- В. В. Арестов, “Неравенство Сеге для производных сопряженного тригонометрического полинома в $L_0$”, Матем. заметки, 56:6 (1994), 10–26
- А. Зигмунд, Тригонометрические ряды, т. I, II, Мир, М., 1965, 615 с., 537 с.
- С. Г. Самко, А. А. Килбас, О. И. Маричев, Интегралы и производные дробного порядка и некоторые их приложения, Наука и техника, Минск, 1987, 688 с.
- В. В. Арестов, “Интегральные неравенства для алгебраических многочленов на единичной окружности”, Матем. заметки, 48:4 (1990), 7–18
- В. В. Арестов, “Об интегральных неравенствах для тригонометрических полиномов и их производных”, Изв. АН СССР. Сер. матем., 45:1 (1981), 3–22
- В. В. Арестов, “Точные неравенства для тригонометрических полиномов относительно интегральных функционалов”, Тр. ИММ УрО РАН, 16:4 (2010), 38–53
- В. В. Арестов, П. Ю. Глазырина, “Интегральные неравенства для алгебраических и тригонометрических полиномов”, Докл. РАН, 442:6 (2012), 727–731
- V. V. Arestov, P. Yu. Glazyrina, “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512
- В. В. Арестов, П. Ю. Глазырина, “Неравенство Бернштейна–Сеге для дробных производных тригонометрических полиномов”, Тр. ИММ УрО РАН, 20:1 (2014), 17–31
- T. Erdèlyi, “Arestov's theorems on Bernstein's inequality”, J. Approx. Theory, 250 (2020), 105323, 9 pp.
- A. O. Leont'eva, “Bernstein–Szegő inequality for trigonometric polynomials in $L_p$, $0le p leinfty$, with the classical value of the best constant”, J. Approx. Theory, 276 (2022), 105713, 11 pp.
- Н. П. Корнейчук, В. Ф. Бабенко, А. А. Лигун, Экстремальные свойства полиномов и сплайнов, Наукова думка, Киев, 1992, 304 с.
- В. Ф. Бабенко, Н. П. Корнейчук, В. А. Кофанов, С. А. Пичугов, Неравенства для производных и их приложения, Наукова думка, Киев, 2003, 590 с.
- G. V. Milovanovic, D. S. Mitrinovic, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ., River Edge, NJ, 1994, xiv+821 pp.
- A. I. Kozko, “The exact constants in the Bernstein–Zygmund–Szegö inequalities with fractional derivatives and the Jackson–Nikolskii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416
- В. В. Арестов, “О неравенствах С. Н. Бернштейна для алгебраических и тригонометрических полиномов”, Докл. АН СССР, 246:6 (1979), 1289–1292
- Н. В. Попов, “Об одном интегральном неравенстве для тригонометрических полиномов”, Современные методы теории функций и смежные проблемы, Материалы Международной конференции “Воронежская зимняя математическая школа” / Воронеж. гос. ун-т; Моск. гос. ун-т им. М. В. Ломоносова; Матем. ин-т им. В. А. Стеклова РАН (28 января – 2 февраля 2021 г.), Издательский дом ВГУ, Воронеж, 2021, 243–245
- Г. Полиа, Г. Сегe, Задачи и теоремы из анализа, в 2 т., Наука, М., 1978, 391 с., 431 с.
- M. Marden, The geometry of the zeros of a polynomial in a complex variable, Math. Surveys, 3, Amer. Math. Soc., New York, 1949, ix+183 pp.
- Н. И. Ахиезер, Классическая проблема моментов и некоторые вопросы анализа, связанные с нею, Физматгиз, М., 1961, 310 с.
- P. L. Butzer, S. Jansche, “A direct approach to the Mellin transform”, J. Fourier Anal. Appl., 3:4 (1997), 325–376
补充文件
