Bernstein–Szegö inequality for Riesz derivative of trigonometric polynomials in the spaces $L_p$, $0\le p\le\infty$, with the classical value of the best constant

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Рассматривается неравенство Бернштейна–Сегё для производной Вейля вещественного порядка $\alpha\ge 0$ тригонометрических полиномов порядка $n$. Изучается вопрос о том, при каких значениях параметров точная константа в этом неравенстве принимает классическое значение $n^\alpha$ во всех $L_p$, $0\le p\le\infty$. Для важных частных случаев производной Вейля–Сегё, а именно производной Рисса и сопряженной производной Рисса, при каждом $n\in\mathbb N$ точно описано множество таких значений $\alpha$.Библиография: 22 названия.

作者简介

Anastasiya Leont'eva

Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: lao-imm@yandex.ru
Candidate of physico-mathematical sciences, Researcher

参考

  1. H. Weyl, “Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung”, Vierteljschr. Naturforsch. Ges. Zürich, 62 (1917), 296–302
  2. В. В. Арестов, “Неравенство Сеге для производных сопряженного тригонометрического полинома в $L_0$”, Матем. заметки, 56:6 (1994), 10–26
  3. А. Зигмунд, Тригонометрические ряды, т. I, II, Мир, М., 1965, 615 с., 537 с.
  4. С. Г. Самко, А. А. Килбас, О. И. Маричев, Интегралы и производные дробного порядка и некоторые их приложения, Наука и техника, Минск, 1987, 688 с.
  5. В. В. Арестов, “Интегральные неравенства для алгебраических многочленов на единичной окружности”, Матем. заметки, 48:4 (1990), 7–18
  6. В. В. Арестов, “Об интегральных неравенствах для тригонометрических полиномов и их производных”, Изв. АН СССР. Сер. матем., 45:1 (1981), 3–22
  7. В. В. Арестов, “Точные неравенства для тригонометрических полиномов относительно интегральных функционалов”, Тр. ИММ УрО РАН, 16:4 (2010), 38–53
  8. В. В. Арестов, П. Ю. Глазырина, “Интегральные неравенства для алгебраических и тригонометрических полиномов”, Докл. РАН, 442:6 (2012), 727–731
  9. V. V. Arestov, P. Yu. Glazyrina, “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512
  10. В. В. Арестов, П. Ю. Глазырина, “Неравенство Бернштейна–Сеге для дробных производных тригонометрических полиномов”, Тр. ИММ УрО РАН, 20:1 (2014), 17–31
  11. T. Erdèlyi, “Arestov's theorems on Bernstein's inequality”, J. Approx. Theory, 250 (2020), 105323, 9 pp.
  12. A. O. Leont'eva, “Bernstein–Szegő inequality for trigonometric polynomials in $L_p$, $0le p leinfty$, with the classical value of the best constant”, J. Approx. Theory, 276 (2022), 105713, 11 pp.
  13. Н. П. Корнейчук, В. Ф. Бабенко, А. А. Лигун, Экстремальные свойства полиномов и сплайнов, Наукова думка, Киев, 1992, 304 с.
  14. В. Ф. Бабенко, Н. П. Корнейчук, В. А. Кофанов, С. А. Пичугов, Неравенства для производных и их приложения, Наукова думка, Киев, 2003, 590 с.
  15. G. V. Milovanovic, D. S. Mitrinovic, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ., River Edge, NJ, 1994, xiv+821 pp.
  16. A. I. Kozko, “The exact constants in the Bernstein–Zygmund–Szegö inequalities with fractional derivatives and the Jackson–Nikolskii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416
  17. В. В. Арестов, “О неравенствах С. Н. Бернштейна для алгебраических и тригонометрических полиномов”, Докл. АН СССР, 246:6 (1979), 1289–1292
  18. Н. В. Попов, “Об одном интегральном неравенстве для тригонометрических полиномов”, Современные методы теории функций и смежные проблемы, Материалы Международной конференции “Воронежская зимняя математическая школа” / Воронеж. гос. ун-т; Моск. гос. ун-т им. М. В. Ломоносова; Матем. ин-т им. В. А. Стеклова РАН (28 января – 2 февраля 2021 г.), Издательский дом ВГУ, Воронеж, 2021, 243–245
  19. Г. Полиа, Г. Сегe, Задачи и теоремы из анализа, в 2 т., Наука, М., 1978, 391 с., 431 с.
  20. M. Marden, The geometry of the zeros of a polynomial in a complex variable, Math. Surveys, 3, Amer. Math. Soc., New York, 1949, ix+183 pp.
  21. Н. И. Ахиезер, Классическая проблема моментов и некоторые вопросы анализа, связанные с нею, Физматгиз, М., 1961, 310 с.
  22. P. L. Butzer, S. Jansche, “A direct approach to the Mellin transform”, J. Fourier Anal. Appl., 3:4 (1997), 325–376

补充文件

附件文件
动作
1. JATS XML

版权所有 © Leont'eva A.O., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».