About some classes of almost Hermitian structures, which realized on $S^6$
- Authors: Daurtseva N.A.1
 - 
							Affiliations: 
							
- Novosibirsk State University
 
 - Issue: Vol 214, No 5 (2023)
 - Pages: 128-139
 - Section: Articles
 - URL: https://journal-vniispk.ru/0368-8666/article/view/133525
 - DOI: https://doi.org/10.4213/sm9830
 - ID: 133525
 
Cite item
Abstract
Structures of cohomogeneity one on 
About the authors
Nataliya Aleksandrovna Daurtseva
Novosibirsk State University
							Author for correspondence.
							Email: n.daurtseva@g.nsu.ru
				                					                																			                								Candidate of physico-mathematical sciences, Associate professor				                														
References
- E. Calaby, H. Gluck, “What are the best almost-complex structures on the 6-sphere?”, Differential geometry: geometry in mathematical physics and related topics, Part 2 (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 2, Amer. Math. Soc., Providence, RI, 1993, 99–106
 - T. Friedrich, “Nearly Kähler and nearly parallel $G_2$-structures on spheres”, Arch. Math. (Brno), 42:5 (2006), 241–243
 - C. LeBrun, “Orthogonal complex structures on $S^6$”, Proc. Amer. Math. Soc., 101:1 (1987), 136–138
 - G. Bor, L. Hernandez-Lamoneda, “The canonical bundle of a Hermitian manifold”, Bol. Soc. Mat. Mexicana (3), 5:1 (1999), 187–198
 - L. Foscolo, M. Haskins, “New $G_2$-holonomy cones and exotic nearly Kähler structures on $S^6$ and $S^3times S^3$”, Ann. of Math. (2), 185:1 (2017), 59–130
 - A. Gray, L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. (4), 123 (1980), 35–58
 - P. S. Mostert, “On a compact Lie group acting on a manifold”, Ann. of Math. (2), 65:3 (1957), 447–455
 - L. Berard-Bergery, “Sur de nouvelles varietes riemanniennes d'Einstein”, Inst. Elie Cartan, 6, Univ. Nancy, Nancy, 1982, 1–60
 - Г. Бредон, Введение в теорию компактных групп преобразований, Наука, М., 1980, 440 с.
 - F. Podestà, A. Spiro, “Six-dimensional nearly Kähler manifolds of cohomogeneity one”, J. Geom. Phys., 60:2 (2010), 156–164
 - F. Podestà, A. Spiro, “Six-dimensional nearly Kähler manifolds of cohomogeneity one (II)”, Comm. Math. Phys., 312:2 (2012), 477–500
 - P. Candelas, X. C. de la Ossa, “Comments on conifolds”, Nuclear Phys. B, 342:1 (1990), 246–268
 - N. Hitchin, “Stable forms and special metrics”, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), Contemp. Math., 288, Amer. Math. Soc., Providence, RI, 2001, 70–89
 - Н. А. Даурцева, “Квази-кэлеровы структуры кооднородности $1$ на $S^2times S^4$”, Сиб. матем. журн., 61:4 (2020), 765–776
 
Supplementary files
				
			
					
						
						
						
						
				

