Birational rigidity of G-del Pezzo threefolds of degree 2
- Authors: Avilov A.A.1
-
Affiliations:
- HSE University
- Issue: Vol 214, No 6 (2023)
- Pages: 3-40
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133526
- DOI: https://doi.org/10.4213/sm9787
- ID: 133526
Cite item
Abstract
We classify nodal rational non-
Keywords
About the authors
Artem Alexeevich Avilov
HSE University
Author for correspondence.
Email: math-net2025_06@mi-ras.ru
References
- D. Abramovich, Jianhua Wang, “Equivariant resolution of singularities in characteristic 0”, Math. Res. Lett., 4:2-3 (1997), 427–433
- А. А. Авилов, “Автоморфизмы трехмерных многообразий, представимых в виде пересечения двух квадрик”, Матем. сб., 207:3 (2016), 3–18
- A. Avilov, “Automorphisms of singular three-dimensional cubic hypersurfaces”, Eur. J. Math., 4:3 (2018), 761–777
- А. А. Авилов, “Бирегулярная и бирациональная геометрия двойных накрытий проективного пространства с ветвлением в квартике с 15 обыкновенными двойными точками”, Изв. РАН. Сер. матем., 83:3 (2019), 5–14
- I. Cheltsov, Kummer quartic double solids
- I. Cheltsov, A. Dubouloz, T. Kishimoto, Toric $G$-solid Fano threefolds
- I. Cheltsov, V. Przyjalkowski, C. Shramov, “Which quartic double solids are rational?”, J. Algebraic Geom., 28:2 (2019), 201–243
- I. Cheltsov, V. Przyjalkowski, C. Shramov, “Quartic double solids with icosahedral symmetry”, Eur. J. Math., 2:1 (2016), 96–119
- I. Cheltsov, C. Shramov, “Five embeddings of one simple group”, Trans. Amer. Math. Soc., 366:3 (2014), 1289–1331
- I. Cheltsov, C. Shramov, Cremona groups and the icosahedron, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2016, xxi+504 pp.
- I. Cheltsov, C. Shramov, “Three embeddings of the Klein simple group into the Cremona group of rank three”, Transform. Groups, 17:2 (2012), 303–350
- I. Cheltsov, C. Shramov, “Finite collineation groups and birational rigidity”, Selecta Math. (N.S.), 25:5 (2019), 71, 68 pp.
- I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Boston, MA, 2009, 443–548
- I. V. Dolgachev, “Abstract configurations in algebraic geometry”, The Fano conference, Univ. Torino, Turin, 2004, 423–462
- T. Fujita, “On singular del Pezzo varieties”, Algebraic geometry (L'Aquila, 1988), Lecture Notes in Math., 1417, Springer, Berlin, 1990, 117–128
- T. Fujita, “On the structure of polarized manifolds with total deficiency one. I”, J. Math. Soc. Japan, 32:4 (1980), 709–725
- T. Fujita, Classification theories of polarized varieties, London Math. Soc. Lecture Note Ser., 155, Cambridge Univ. Press, Cambridge, 1990, xiv+205 pp.
- P. Jahnke, Th. Peternell, “Almost del Pezzo manifolds”, Adv. Geom., 8:3 (2008), 387–411
- A. Kuznetsov, Yu. Prokhorov, On higher-dimensional del Pezzo varieties
- K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002, xxiv+478 pp.
- S. Mori, S. Mukai, “Classification of Fano 3-folds with $B_{2}geq 2$”, Manuscripta Math., 36:2 (1981/82), 147–162
- Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418
- Yu. Prokhorov, “2-elementary subgroups of the space Cremona group”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 215–229
- Ю. Г. Прохоров, “O трехмерных $G$-многообразиях Фано”, Изв. РАН. Сер. матем., 79:4 (2015), 159–174
- Yu. Prokhorov, “$p$-elementary subgroups of the Cremona group of rank 3”, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 327–338
- Yu. Prokhorov, “Simple finite subgroups of the Cremona group of rank 3”, J. Algebraic Geom., 21:3 (2012), 563–600
- Ю. Г. Прохоров, “Особые многообразия Фано рода 12”, Матем. сб., 207:7 (2016), 101–130
- Ю. Г. Прохоров, “Эквивариантная программа минимальных моделей”, УМН, 76:3(459) (2021), 93–182
- G. Sanna, Rational curves and instantons on the Fano threefold $Y_{5}$, PhD thesis, SISSA, 2014, 120 pp.
Supplementary files
