Forms of del Pezzo surfaces of degree 5 and 6
- Authors: Zaitsev A.V.1
-
Affiliations:
- Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
- Issue: Vol 214, No 6 (2023)
- Pages: 69-86
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133530
- DOI: https://doi.org/10.4213/sm9686
- ID: 133530
Cite item
Abstract
We obtain necessary and sufficient condition for the existence of del Pezzo surfaces of degrees
Keywords
About the authors
Alexandr Vladimirovich Zaitsev
Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
Author for correspondence.
Email: math-net2025_06@mi-ras.ru
without scientific degree, no status
References
- I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Boston, MA, 2009, 443–548
- I. V. Dolgachev, V. A. Iskovskikh, “On elements of prime order in the plane Cremona group over a perfect field”, Int. Math. Res. Not. IMRN, 2009:18 (2009), 3467–3485
- E. A. Yasinsky, Automorphisms of real del Pezzo surfaces and the real plane Cremona group
- J.-P. Serre, “A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field”, Mosc. Math. J., 9:1 (2009), 183–198
- A. Beauville, “Finite subgroups of $mathrm{PGL}_2(K)$”, Vector bundles and complex geometry, Contemp. Math., 522, Amer. Math. Soc., Providence, RI, 2010, 23–29
- M. Garcia-Armas, “Finite group actions on curves of genus zero”, J. Algebra, 394 (2013), 173–181
- I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp.
- A. Skorobogatov, Torsors and rational points, Cambridge Tracts in Math., 144, Cambridge Univ. Press, Cambridge, 2001, viii+187 pp.
- Hsueh-Yung Lin, E. Shinder, S. Zimmermann, Factorization centers in dimension two and the Grothendieck ring of varieties
- И. Р. Шафаревич, Основы алгебраической геометрии, 3-е изд., МЦНМО, М., 2007, 590 с.
- The Stacks project
- A. N. Skorobogatov, “On a theorem of Enriques–Swinnerton-Dyer”, Ann. Fac. Sci. Toulouse Math. (6), 2:3 (1993), 429–440
- A. Auel, M. Bernardara, “Semiorthogonal decompositions and birational geometry of del Pezzo surfaces over arbitrary fields”, Proc. Lond. Math. Soc. (3), 117:1 (2018), 1–64
- Incomplete failures of the inverse Galois problem
- Б. Л. ван дер Варден, Алгебра, Наука, М., 1976, 648 с.
- И. Р. Шафаревич, “Построение полей алгебраических чисел с заданной разрешимой группой Галуа”, Изв. АН СССР. Сер. матем., 18:6 (1954), 525–578
- N. Vila, “On the inverse problem of Galois theory”, Publ. Mat., 36:2B (1992), 1053–1073
- C. O. Горчинский, К. А. Шрамов, Неразветвленная группа Брауэра и ее приложения, МЦНМО, М., 2018, 200 с.
- J. Schneider, S. Zimmermann, “Algebraic subgroups of the plane Cremona group over a perfect field”, Epijournal Geom. Algebrique, 5 (2021), 14, 48 pp.
Supplementary files
