Algebra of shares, complete bipartite graphs, and $\mathfrak{sl}_2$ weight system
- Authors: Zinova P.A.1, Kazarian M.E.1,2
-
Affiliations:
- HSE University
- Center for Advanced Studies, Skolkovo Institute of Science and Technology
- Issue: Vol 214, No 6 (2023)
- Pages: 87-109
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133532
- DOI: https://doi.org/10.4213/sm9795
- ID: 133532
Cite item
Abstract
A function of chord diagrams is called a weight system if it satisfies the so-called four-term relations. Vassiliev's theory describes finite-order knot invariants in terms of weight systems. In particular, there is a weight system corresponding to the coloured Jones polynomial. This weight system is described in terms of the Lie algebra
We obtain formulae for the generating functions of the values of the
We introduce the algebra of shares and the
About the authors
Polina Aleksandrovna Zinova
HSE University
Author for correspondence.
Email: kazarian@mccme.ru
without scientific degree, no status
Maxim Eduardovich Kazarian
HSE University; Center for Advanced Studies, Skolkovo Institute of Science and Technology
Email: kazarian@mccme.ru
Doctor of physico-mathematical sciences, no status
References
- V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69
- M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
- D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
- S. Chmutov, A. Varchenko, “Remarks on the Vassiliev knot invariants coming from $mathfrak{sl}_2$”, Topology, 36:1 (1997), 153–178
- S. V. Chmutov, S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598
- П. Е. Закорко, “Значения $mathfrak{sl}_2$-весовой системы на хордовых диаграммах с полным графом пересечения”, Матем. сб., 214:7 (2023) (в печати)
- П. A. Филиппова, “Значения весовой системы, отвечающей алгебре Ли $mathfrak{sl}_2$, на полных двудольных графах”, Функц. анализ и его прил., 54:3 (2020), 73–93
- П. А. Филиппова, “Значения $mathfrak{sl}_2$-весовой системы на семействе графов, не являющихся графами пересечений хордовых диаграмм”, Матем. сб., 213:2 (2022), 115–148
- S. A. Joni, G.-C. Rota, “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61:2 (1979), 93–139
- S. K. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80:1 (2000), 104–121
- J. W. Milnor, J. C. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264
- W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330
- А. К. Звонкин, С. К. Ландо, Графы на поверхностях и их приложения, МЦНМО, М., 2010, 480 с.
- S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.
Supplementary files
