Comparison theorems for evolution inclusions with maximal monotone operators. $L^2$-theory
- Authors: Tolstonogov A.A.1
-
Affiliations:
- Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
- Issue: Vol 214, No 6 (2023)
- Pages: 110-135
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133535
- DOI: https://doi.org/10.4213/sm9736
- ID: 133535
Cite item
Abstract
An evolution inclusion with time-dependent family of maximal monotone operators in considered in a separable Hilbert space. If the elements with minimum norm of the family of maximal monotone operators satisfy certain growth conditions, then the domains of definition of this family are closed convex sets. Hence the sweeping process is well defined, whose values are the normal cones of the domains of definition of maximal monotone operators. It is shown that if the sweeping process has a solution for each single-valued perturbation from the space of integrable functions, then the evolution inclusion with the maximal monotone operators and single-valued perturbations from the space of integrable functions is also solvable. Quite general conditions in terms of the properties of the family of maximal monotone operators that ensure the existence of solutions for the sweeping process are presented.
All results obtained and the approach presented are new. They are used to prove an existence theorem for evolution inclusions with multivalued perturbations, whose values are closed nonconvex sets.
About the authors
Alexander Alexandrovich Tolstonogov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
Author for correspondence.
Email: aatol@icc.ru
Doctor of physico-mathematical sciences, Professor
References
- H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, Notas Mat., 50, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973, vi+183 pp.
- A. A. Tolstonogov, “BV continuous solutions of an evolution inclusion with maximal monotone operator and nonconvex-valued perturbation. Existence theorem”, Set-Valued Var. Anal., 29:1 (2021), 29–60
- J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374
- A. A. Vladimirov, “Nonstationary dissipative evolution equations in a Hilbert space”, Nonlinear Anal., 17:6 (1991), 499–518
- D. Azzam-Laouir, W. Belhoula, C. Castaing, M. D. P. Monteiro Marques, “Perturbed evolution problems with absolutely continuous variation in time and applications”, J. Fixed Point Theory Appl., 21:2 (2019), 40, 32 pp.
- C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72
- H. Attouch, “Familles d'operateurs maximaux monotones et measurabilite”, Ann. Mat. Pura Appl. (4), 120 (1979), 35–111
- В. И. Богачев, Основы теории меры, т. 2, 2-е изд., НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2006, 679 с.
- H. Attouch, R. J.-B. Wets, “Quantitative stability of variational systems. I. The epigraphical distance”, Trans. Amer. Math. Soc., 328:2 (1991), 695–729
- M. G. Crandall, A. Pazy, “Semi-groups of nonlinear contractions and dissipative sets”, J. Funct. Anal., 3:3 (1969), 376–418
- A. A. Tolstonogov, “BV solutions of a convex sweeping process with local conditions in the sense of differential measures”, Appl. Math. Optim., 84, suppl. 1 (2021), S591–S629
- А. А. Толстоногов, “$L_p$-непрерывные селекторы неподвижных точек многозначных отображений с разложимыми значениями. I. Теоремы существования”, Сиб. матем. журн., 40:3 (1999), 695–709
- M. Kunze, M. D. P. Monteiro Marques, “BV solutions to evolution problems with time-dependent domains”, Set-Valued Anal., 5:1 (1997), 57–72
- E. Vilches, Bao Tran Nguyen, “Evolution inclusions governed by time-dependent maximal monotone operators with a full domain”, Set-Valued Var. Anal., 28:3 (2020), 569–581
- I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Grundlehren Math. Wiss., 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York–Berlin, 1970, 415 pp.
- А. А. Толстоногов, “Максимальная монотонность оператора Немыцкого”, Функц. анализ и его прил., 55:3 (2021), 51–61
- A. A. Tolstonogov, “Sweeping process with unbounded nonconvex perturbation”, Nonlinear Anal., 108 (2014), 291–301
- A. A. Tolstonogov, “Polyhedral sweeping processes with unbounded nonconvex-valued perturbation”, J. Differential Equations, 263:11 (2017), 7965–7983
- А. А. Толстоногов, “Полиэдральные многозначные отображения: свойства и приложения”, Сиб. матем. журн., 61:2 (2020), 428–452
Supplementary files
