Explicit deformation of the horospherical variety of type $G_2$
- Authors: Kuznetsov A.G.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 214, No 8 (2023)
- Pages: 63-73
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133542
- DOI: https://doi.org/10.4213/sm9897
- ID: 133542
Cite item
Abstract
We give two simple geometric constructions of a smooth family of projective varieties with central fiber isomorphic to the horospherical variety of type
About the authors
Alexander Gennad'evich Kuznetsov
Steklov Mathematical Institute of Russian Academy of Sciences
Author for correspondence.
Email: akuznet@mi-ras.ru
Doctor of physico-mathematical sciences, no status
References
- R. Gonzales, C. Pech, N. Perrin, A. Samokhin, “Geometry of horospherical varieties of Picard rank one”, Int. Math. Res. Not. IMRN, 2022:12 (2022), 8916–9012
- А. Г. Кузнецов, “Гиперплоские сечения и производные категории”, Изв. РАН. Сер. матем., 70:3 (2006), 23–128
- A. Kuznetsov, “Exceptional collections for Grassmannians of isotropic lines”, Proc. Lond. Math. Soc. (3), 97:1 (2008), 155–182
- A. Kuznetsov, “Base change for semiorthogonal decompositions”, Compos. Math., 147:3 (2011), 852–876
- А. Г. Кузнецов, “О линейных сечениях спинорного 10-мерного многообразия. I”, Изв. РАН. Сер. матем., 82:4 (2018), 53–114
- A. Kuznetsov, “Derived equivalence of Ito–Miura–Okawa–Ueda Calabi–Yau 3-folds”, J. Math. Soc. Japan, 70:3 (2018), 1007–1013
- B. Pasquier, “On some smooth projective two-orbit varieties with Picard number 1”, Math. Ann., 344:4 (2009), 963–987
- B. Pasquier, N. Perrin, “Local rigidity of quasi-regular varieties”, Math. Z., 265:3 (2010), 589–600
Supplementary files
