Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 214, No 8 (2023)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Existence of polynomial solutions of the Monge-Ampère equation of the 4th degree. Strong bending of a thin plate

Aminov Y.A.

Abstract

В работе даны необходимые и достаточные условия для существования решения простейшего уравнения Монжа–Ампера, когда правая часть и решение являются полиномами 4-й степени. Дан конструктивный метод решения основной системы алгебраических уравнений, соответствующей оператору Монжа–Ампера при выполнении указанных условий на заданный полином. Рассмотрено приложение полученных результатов в теории сильного изгиба тонкой пластинки.Библиография: 9 названий.
Matematicheskii Sbornik. 2023;214(8):3-17
pages 3-17 views

On the solvability of the Nevanlinna-Pik interpolation problem

Buslaev V.I.

Abstract

В статье доказывается теорема о разрешимости интерполяционной проблемы Неванлинны–Пика, крайними случаями которой с одной стороны являются критерии Каратеодори и Шура (если все точки интерполяции совпадают между собой), а с другой – теорема Крейна–Рехтман (если все точки интерполяции попарно различны).Библиография: 19 названий.
Matematicheskii Sbornik. 2023;214(8):18-52
pages 18-52 views

Symmetric matrices and maximal Nijenhuis pencils

Konyaev A.Y.

Abstract

Пучком Нийенхейса называется линейное подпространство в пространстве тензорных полей типа $(1, 1)$, которое состоит из операторов Нийенхейса. В работе решается задача описания максимальных по включению пучков Нийенхейса, содержащих подпучок размерности $n(n+1)/2$, операторы которого в некоторой системе координат – симметрические постоянные матрицы. Таких максимальных пучков, оказывается, два, оба они естественным образом возникают в приложениях, в частности, в теории бесконечномерных интегрируемых систем.Библиография: 6 названий.
Matematicheskii Sbornik. 2023;214(8):53-62
pages 53-62 views

Explicit deformation of the horospherical variety of type $G_2$

Kuznetsov A.G.

Abstract

В статье приводятся две простые алгебраические конструкции гладкого семейства проективных многообразий с центральным слоем, изоморфным орисферическому многообразию типа $\mathrm{G}_2$, и всеми остальными слоями, изоморфными изотропному ортогональному грассманиану $\operatorname{OGr}(2,7)$, и кратко обсуждается производная категория этого семейства. Библиография: 8 названий.
Matematicheskii Sbornik. 2023;214(8):63-73
pages 63-73 views

Homologies of transitive digraphs and discrete spaces

Muranov Y.V., Jimenez R.B.

Abstract

В работе доказано, что для транзитивных орграфов гомологии путей и, следовательно, гомологии Александрова совпадают с сингулярными кубическими гомологиями. Также в работе определены дискретные топологические пространства, являющиеся естественными аналогами стандартных топологических кубов. С их помощью определены сингулярные кубические гомологии дискретных топологических пространств и доказано, что эти группы гомологий совпадают с гомологиями Александрова. Библиография: 24 названия.
Matematicheskii Sbornik. 2023;214(8):74-93
pages 74-93 views

Knot as a complete invariant of a Morse-Smale 3-diffeomorphism with four fixed points

Pochinka O.V., Talanova E.A., Shubin D.D.

Abstract

 

 

Matematicheskii Sbornik. 2023;214(8):94-107
pages 94-107 views

A remark on 0-cycles as modules over algebras of finite correspondences

Rovinskii M.Z.

Abstract

Для каждого гладкого проективного многообразия $X$ над полем рассмотрим $\mathbb Q$-векторное пространство $Z_0(X)$ 0-циклов (т.е. формальных конечных $\mathbb Q$-линейных комбинаций замкнутых точек $X$) как модуль над алгеброй конечных соответствий. Тогда рационально тривиальные 0-циклы на $X$ образуют абсолютно простой и существенный подмодуль в $Z_0(X)$. Библиография: 15 названий.
Matematicheskii Sbornik. 2023;214(8):108-118
pages 108-118 views

On the weighted Bojanov-Chebyshev problem and Fenton's sum of translates method

Farkas B., Nagy B., Révész S.G.

Abstract

Изучаются минимаксные и максиминные задачи на отрезке $[0,1]$ для специального класса функций, представляющих собой суммы с положительными коэффициентами сдвигов фиксированной ядерной функции и достаточно общей внешней полевой функции. Вследствие достаточной общности рассматриваемой нами конструкции наши результаты обобщают теоремы о минимаксе, альтернансе, а также характеризационные теоремы для экстремальных многочленов, полученные ранее в работах Б. Д. Боянова, П. Фентона, Д. Хардина, А. Кендела, Э. Саффа, Г. Амбруса, К. Болла и Т. Эрдейи. Кроме того, мы обнаруживаем неожиданный феномен перемежаемости максимумов на отрезках, что приводит к новым следствиям даже в классической экстремальной задаче Чебышёва. Библиография: 25 названий.
Matematicheskii Sbornik. 2023;214(8):119-150
pages 119-150 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».