A remark on 0-cycles as modules over algebras of finite correspondences
- Authors: Rovinskii M.Z.1,2
-
Affiliations:
- Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
- Issue: Vol 214, No 8 (2023)
- Pages: 108-118
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133546
- DOI: https://doi.org/10.4213/sm9907
- ID: 133546
Cite item
Abstract
Given a smooth projective variety
About the authors
Marat Zefirovich Rovinskii
Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE); Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
Author for correspondence.
Email: marat@mccme.ru
Doctor of physico-mathematical sciences
References
- A. Beilinson, “Remarks on $n$-motives and correspondences at the generic point”, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), Int. Press Lect. Ser., 3, no. 1, Int. Press, Somerville, MA, 2002, 35–46
- J. Bernstein, Draft of: Representations of $p$-adic groups, Lectures, written by K. E. Rumelhart (Harvard Univ., 1992), 110 pp.
- P. Cartier, “Representations of $mathfrak p$-adic groups: a survey”, Automorphic forms, representations and $L$-functions, Part 1 (Oregon State Univ., Corvallis, OR, 1977), Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, 111–155
- E. M. Friedlander, V. Voevodsky, “Bivariant cycle cohomology”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 138–187
- У. Фултон, Теория пересечений, Мир, М., 1989, 583 с.
- R. S. Irving, “The socle filtration of a Verma module”, Ann. Sci. Ecole Norm. Sup. (4), 21:1 (1988), 47–65
- U. Jannsen, “Motives, numerical equivalence, and semi-simplicity”, Invent. Math., 107:3 (1992), 447–452
- U. Jannsen, “Motivic sheaves and filtrations on Chow groups”, Motives, Part 1, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994, 245–302
- K. S. Kedlaya, “More etale covers of affine spaces in positive characteristic”, J. Algebraic Geom., 14:1 (2005), 187–192
- M. Levine, “Mixed motives”, Handbook of $K$-theory, v. 1, Springer-Verlag, Berlin, 2005, 429–521
- Ю. И. Манин, “Соответствия, мотивы и моноидальные преобразования”, Матем. сб., 77(119):4 (1968), 475–507
- P. Samuel, “Relations d'equivalence en geometrie algebrique”, Proceedings of the international congress of mathematicians (Edinburgh, 1958), Cambridge Univ. Press, Cambridge, 1960, 470–487
- A. Suslin, V. Voevodsky, “Singular homology of abstract algebraic varieties”, Invent. Math., 123:1 (1996), 61–94
- V. Voevodsky, “Homology of schemes”, Selecta Math. (N.S.), 2:1 (1996), 111–153
- V. Voevodsky, “Triangulated categories of motives over a field”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 188–238
Supplementary files
