Abnormal extremals in the sub-Riemannian problem for a general model of a robot with a trailer
- Autores: Ardentov A.A.1, Artemova E.M.2
-
Afiliações:
- Ailamazyan Program Systems Institute of Russian Academy of Sciences
- Ural Mathematical Center
- Edição: Volume 214, Nº 10 (2023)
- Páginas: 3-24
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/140514
- DOI: https://doi.org/10.4213/sm9829
- ID: 140514
Citar
Resumo
Sobre autores
Andrei Ardentov
Ailamazyan Program Systems Institute of Russian Academy of Sciences
Email: aaa@pereslavl.ru
Candidate of technical sciences, no status
Elizaveta Artemova
Ural Mathematical Center
Email: liz-artemova2014@yandex.ru
Bibliografia
- R. Montgomery, “Abnormal optimal controls and open problems in nonholonomic steering”, IFAC Proc. Vol., 25:13 (1992), 121–126
- D. Barilari, U. Boscain, E. Le Donne, M. Sigalotti, “Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions”, J. Dyn. Control Syst., 23:3 (2017), 547–575
- В. Н. Берестовский, И. А. Зубарева, “Анормальные экстремали левоинвариантных субфинслеровых квазиметрик на четырехмерных группах Ли”, Сиб. матем. журн., 62:3 (2021), 477–497
- F. Pelletier, L. Bouche, “Abnormality of trajectory in sub-Riemannian structure”, Geometry in nonlinear control and differential inclusions (Warsaw, 1993), Banach Center Publ., 32, Polish Acad. Sci., Inst. Math., Warsaw, 1995, 301–317
- H. J. Sussmann, “A cornucopia of four-dimensional abnormal sub-Riemannian minimizers”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser Verlag, Basel, 1996, 341–364
- Ю. Л. Сачков, Е. Ф. Сачкова, “Структура анормальных экстремалей в субримановой задаче с вектором роста $(2,3,5,8)$”, Матем. сб., 211:10 (2020), 112–138
- B. Bonnard, E. Trelat, “On the role of abnormal minimizers in sub-Riemannian geometry”, Ann. Fac. Sci. Toulouse Math. (6), 10:3 (2001), 405–491
- A. A. Agrachev, A. V. Sarychev, “Abnormal sub-Riemannian geodesics: Morse index and rigidity”, Ann. Inst. H. Poincare C Anal. Non Lineaire, 13:6 (1996), 635–690
- A. A. Agrachev, A. V. Sarychev, “Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity”, ESAIM Control Optim. Calc. Var., 4 (1999), 377–403
- A. Agrachev, J.-P. Gauthier, “On the subanalyticity of Carnot–Caratheodory distances”, Ann. Inst. H. Poincare C Anal. Non Lineaire, 18:3 (2001), 359–382
- Ю. Л. Сачков, А. Ю. Попов, “Субриманова сфера Энгеля”, Докл. РАН. Матем., информ., проц. упр., 500 (2021), 97–101
- A. Ardentov, E. Hakavuori, “Cut time in the sub-Riemannian problem on the Cartan group”, ESAIM Control Optim. Calc. Var., 28 (2022), 12, 19 pp.
- A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448
- R. S. Strichartz, “Sub-Riemannian geometry”, J. Differential Geom., 24:2 (1986), 221–263
- R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp.
- R. Monti, “The regularity problem for sub-Riemannian geodesics”, Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., 5, Springer, Cham, 2014, 313–332
- E. Hakavuori, E. Le Donne, “Non-minimality of corners in subriemannian geometry”, Invent. Math., 206:3 (2016), 693–704
- А. А. Аграчев, Ю. Л. Сачков, Геометрическая теория управления, Физматлит, М., 2005, 392 с.
- M. Chyba, S. Sekhavat, “Time optimal paths for a mobile robot with one trailer”, Proceedings 1999 IEEE/RSJ International conference on intelligent robots and systems. Human and environment friendly robots with high intelligence and emotional quotients, v. 3, IEEE, 1999, 1669–1674
- H. Chitsaz, “On time-optimal trajectories for a car-like robot with one trailer”, 2013 Proceedings of the conference on control and its applications (CT), SIAM, 2013, 114–120
- I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399
- Yu. L. Sachkov, “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:4 (2010), 1018–1039
- Yu. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321
- A. A. Ardentov, Yu. L. Sachkov, “Cut time in sub-Riemannian problem on Engel group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988
- A. A. Ardentov, “Controlling of a mobile robot with a trailer and its nilpotent approximation”, Regul. Chaotic Dyn., 21:7-8 (2016), 775–791
- А. А. Ардентов, А. П. Маштаков, “Управление мобильным роботом с прицепом на основе нильпотентной аппроксимации”, Автомат. и телемех., 2021, № 1, 95–118
- А. В. Борисов, А. А. Килин, И. С. Мамаев, “О проблеме Адамара–Гамеля и динамике колесных экипажей”, Нелинейная динам., 12:1 (2016), 145–163
- F. Lamiraux, S. Sekhavat, J.-P. Laumond, “Motion planning and control for Hilare pulling a trailer”, IEEE Trans. Robot. Autom., 15:4 (1999), 640–652
- П. К. Рашевский, “О соединимости любых двух точек вполне неголономного пространства допустимой линией”, Уч. зап. Моск. гос. пед. ин-та им. K. Либкнехта. Сер. физ.-матем. наук, 3:2 (1938), 83–94
- A. Ardentov, G. Bor, E. Le Donne, R. Montgomery, Yu. Sachkov, “Bicycle paths, elasticae and sub-Riemannian geometry”, Nonlinearity, 34:7 (2021), 4661–4683
- Л. С. Понтрягин, В. Г. Болтянский, Р. В. Гамкрелидзе, Е. Ф. Мищенко, Математическая теория оптимальных процессов, Физматгиз, М., 1961, 391 с.
- A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020, xviii+745 pp.
- Е. Янке, Ф. Эмде, Ф. Леш, Специальные функции. Формулы, графики, таблицы, 2-е стер. изд., ред. Л. И. Седов, Наука, М., 1968, 344 с.
Arquivos suplementares
