On a weak topology for Hadamard spaces
- Authors: Bёrdёllima A.1
-
Affiliations:
- Institut für Mathematik, Technische Universität Berlin
- Issue: Vol 214, No 10 (2023)
- Pages: 25-43
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/140515
- DOI: https://doi.org/10.4213/sm9808
- ID: 140515
Cite item
Abstract
About the authors
Arian Bёrdёllima
Institut für Mathematik, Technische Universität Berlin
Email: berdellima@gmail.com
Doctor of Science, Scientific Employee
References
- А. Д. Александров, “Одна теорема о треугольниках в метрическом пространстве и некоторые ее приложения”, Сборник статей. Посвящается академику Ивану Матвеевичу Виноградову к его 60-летию, Тр. МИАН СССР, 38, Изд-во АН СССР, М., 1951, 5–23
- S. Baratella, Ng Siu-Ah, “A nonstandard proof of the Eberlein–Šmulian theorem”, Proc. Amer. Math. Soc., 131:10 (2003), 3177–3180
- A. Bërdëllima, Investigations in Hadamard spaces, Ph.D. thesis, Georg–August-Univ., Göttingen, 2020, 131 pp.
- I. D. Berg, I. G. Nikolaev, “Quasilinearization and curvature of Aleksandrov spaces”, Geom. Dedicata, 133 (2008), 195–218
- M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999, xxii+643 pp.
- Д. Ю. Бураго, Ю. Д. Бураго, С. В. Иванов, Курс метрической геометрии, Ин-т компьютерных исследований, М.–Ижевск, 2004, 512 с.
- M. Bačak, Convex analysis and optimization in Hadamard spaces, De Gruyter Ser. Nonlinear Anal. Appl., 22, De Gruyter, Berlin, 2014, viii+185 pp.
- M. Bačak, Old and new challenges in Hadamard spaces
- R. Espinola, A. Fernandez-Leon, “$mathrm{CAT}(kappa)$-spaces, weak convergence and fixed points”, J. Math. Anal. Appl., 353:1 (2009), 410–427
- M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progr. Math., 152, Transl. from the French, Birkhäuser Boston, Inc., Boston, MA, 1999, xx+585 pp.
- M. L. Gromov, “$mathrm{CAT}(kappa)$-spaces: construction and concentration”, Геометрия и топология. 7, Зап. науч. сем. ПОМИ, 280, ПОМИ, СПб., 2001, 101–140
- J. Jost, “Equilibrium maps between metric spaces”, Calc. Var. Partial Differential Equations, 2 (1994), 173–204
- B. A. Kakavandi, “Weak topologies in complete $CAT(0)$ metric spaces”, Proc. Amer. Math. Soc., 141:3 (2013), 1029–1039
- M. Kell, “Uniformly convex metric spaces”, Anal. Geom. Metr. Spaces, 2:1 (2014), 359–380
- Дж. Л. Келли, Общая топология, 2-е изд., Наука, М., 1981, 432 с.
- Teck-Cheong Lim, “Remarks on some fixed point theorems”, Proc. Amer. Math. Soc., 60 (1976), 179–182
- A. Lytchak, A. Petrunin, “Weak topology on $mathrm{CAT}(0)$ spaces”, Israel J. Math., 255:2 (2023), 763–781
- B. Mendelson, Introduction to topology, 3rd ed., Allyn and Bacon, Inc., Boston, MA, 1975, ix+206 pp.
- Ph. Miller, A. Bërdëllima, M. Wardetzky, Weak topologies for unbounded nets in $mathrm{CAT}(0)$ spaces
- N. Monod, “Superrigidity for irreducible lattices and geometric splitting”, J. Amer. Math. Soc., 19:4 (2006), 781–814
- J. R. Munkres, Topology, 2nd ed., Prentice Hail, Inc., Upper Saddle River, NJ, 2000, xvi+537 pp.
- S. Alexander, V. Kapovitch, A. Petrunin, An invitation to Alexandrov geometry. $mathrm{CAT}(0)$ spaces, SpringerBriefs Math., Springer, Cham, 2019, xii+88 pp.
- Е. Н. Сосов, “Об аналогах слабой сходимости в специальном метрическом пространстве”, Изв. вузов. Матем., 2004, № 5, 84–89
- R. Whitley, “An elementary proof of the Eberlein–Šmulian theorem”, Math. Ann., 172:2 (1967), 116–118
Supplementary files
