On defining functions and cores for unbounded domains. III
- Authors: Harz T.1, Shcherbina N.V.1, Tomassini G.2
-
Affiliations:
- University of Wuppertal
- Scuola Normale Superiore
- Issue: Vol 212, No 6 (2021)
- Pages: 126-156
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/142346
- DOI: https://doi.org/10.4213/sm8898
- ID: 142346
Cite item
Abstract
About the authors
Tobias Harz
University of Wuppertal
Email: harz@math.uni-wuppertal.de
Nikolai Vasil'evich Shcherbina
University of Wuppertal
Email: shcherbina@math.uni-wuppertal.de
Giuseppe Tomassini
Scuola Normale Superiore
References
- A. Andreotti, H. Grauert, “Theorèmes de finitude pour la cohomologie des espaces complexes”, Bull. Soc. Math. France, 90 (1962), 193–259
- J.-P. Demailly, Complex analytic and differential geometry, 2012
- K. Diederich, A. Sukhov, “Plurisubharmonic exhaustion functions and almost complex Stein structures”, Michigan Math. J., 56:2 (2008), 331–355
- K. Diederich, J. E. Fornaess, “Smoothing $q$-convex functions and vanishing theorems”, Invent. Math., 82:2 (1985), 291–305
- G. Fischer, Complex analytic geometry, Lecture Notes in Math., 538, Springer-Verlag, Berlin–New York, 1976, vii+201 pp.
- J. E. Fornaess, R. Narasimhan, “The Levi problem on complex spaces with singularities”, Math. Ann., 248:1 (1980), 47–72
- J. E. Fornaess, B. Stensones, Lectures on counterexamples in several complex variables, Math. Notes, 33, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1987, viii+248 pp.
- M. Fraboni, T. Napier, “Strong $q$-convexity in uniform neighborhoods of subvarieties in coverings of complex spaces”, Math. Z., 265:3 (2010), 653–685
- H. Grauert, “Über Modifikationen und exzeptionelle analytische Mengen”, Math. Ann., 146 (1962), 331–368
- H. Grauert, O. Riemenschneider, “Kählersche Mannigfaltigkeiten mit hyper-$q$-konvexem Rand”, Problems in analysis, Lectures sympos. in honor of S. Bochner (Princeton Univ., Princeton, NJ, 1969), Princeton Univ. Press, Princeton, NJ, 1970, 61–79
- F. R. Harvey, H. B. Lawson, “Potential theory on almost complex manifolds”, Ann. Inst. Fourier (Grenoble), 65:1 (2015), 171–210
- F. R. Harvey, H. B. Lawson, Jr., S. Plis, “Smooth approximation of plurisubharmonic functions on almost complex manifolds”, Math. Ann., 366:3-4 (2016), 929–940
- T. Harz, N. Shcherbina, G. Tomassini, “On defining functions and cores for unbounded domains. I”, Math. Z., 286:3-4 (2017), 987–1002
- T. Harz, N. Shcherbina, G. Tomassini, “On defining functions and cores for unbounded domains. II”, J. Geom. Anal., 30:3 (2020), 2293–2325
- G. M. Henkin, J. Leiterer, Theory of functions on complex manifolds, Monogr. Math., 79, Birkhäuser Verlag, Basel, 1984, 226 pp.
- G. M. Henkin, J. Leiterer, Andreotti–Grauert theory by integral formulas, Progr. Math., 74, Birkhäuser Boston, Inc., Boston, MA, 1988, 270 pp.
- S. Ivashkovich, J.-P. Rosay, “Schwarz-type lemmas for solutions of $overline{partial}$-inequalities and complete hyperbolicity of almost complex manifolds”, Ann. Inst. Fourier (Grenoble), 54:7 (2004), 2387–2435
- J. Morrow, H. Rossi, “Some theorems of algebraicity for complex spaces”, J. Math. Soc. Japan, 27:2 (1975), 167–183
- R. Narasimhan, “The Levi problem for complex spaces”, Math. Ann., 142 (1960/61), 355–365
- R. Narasimhan, “The Levi problem for complex spaces. II”, Math. Ann., 146 (1962), 195–216
- A. Nijenhuis, W. B. Woolf, “Some integration problems in almost-complex and complex manifolds”, Ann. of Math. (2), 77:3 (1963), 424–489
- S. Plis, “The Monge–Ampère equation on almost complex manifolds”, Math. Z., 276:3-4 (2014), 969–983
- S. Plis, “Monge–Ampère operator on four dimensional almost complex manifolds”, J. Geom. Anal., 26:4 (2016), 2503–2518
- R. Richberg, “Stetige streng pseudokonvexe Funktionen”, Math. Ann., 175 (1968), 257–286
- P. A. N. Smith, “Smoothing plurisubharmonic functions on complex spaces”, Math. Ann., 273:3 (1986), 397–413
- G. Tomassini, “Sur les algèbres $A^0(overline D)$ et $A^infty(overline D)$ d'un domaine pseudoconvexe non borne”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10:2 (1983), 243–256
- V. Vâjâitu, “On the equivalence of the definitions of $q$-convex spaces”, Arch. Math. (Basel), 61:6 (1993), 567–575
Supplementary files
