Uniform $\mathrm{K}$-stability modulo a subgroup

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we prove a version of uniform $\mathrm{K}$-stability for a pair $(v,w)$ with respect to a reductive Lie group $\mathbf G$ modulo a subgroup $\mathbf G_0$ of $\mathbf G$. Bibliography: 7 titles.

About the authors

Yan Li

Beijing Institute of Technology

Candidate of physico-mathematical sciences, Associate professor

Gang Tian

Beijing International Center for Mathematical Research, Peking University; School of Mathematical Sciences, Peking University

Xiaohua Zhu

Beijing International Center for Mathematical Research, Peking University; School of Mathematical Sciences, Peking University

References

  1. Chi Li, Chenyang Xu, “Special test-configurations and $K$-stability of Fano varieties”, Ann. of Math. (2), 180:1 (2014), 197–232
  2. S. T. Paul, “Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics”, Ann. of Math. (2), 175:1 (2012), 255–296
  3. S. T. Paul, A numerical criterion for $K$-energy maps of algebraic manifolds
  4. S. T. Paul, Gang Tian, “CM stability and the generalized Futaki invariant II”, Asterisque, 328, Soc. Math. France, Paris, 2009, 339–354
  5. Gang Tian, “Kähler–Einstein metrics with positive scalar curvature”, Invent. Math., 130:1 (1997), 1–37
  6. Gang Tian, “Kähler–Einstein metrics on Fano manifolds”, Jpn. J. Math., 10:1 (2015), 1–41
  7. G. Tian, On uniform $K$-stability of pairs

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Ли Я., Тиан Г., Жу С.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).