Uniform $\mathrm{K}$-stability modulo a subgroup
- Authors: Li Y.1, Tian G.2,3, Zhu X.2,3
-
Affiliations:
- Beijing Institute of Technology
- Beijing International Center for Mathematical Research, Peking University
- School of Mathematical Sciences, Peking University
- Issue: Vol 212, No 3 (2021)
- Pages: 68-87
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/142357
- DOI: https://doi.org/10.4213/sm9430
- ID: 142357
Cite item
Abstract
Keywords
About the authors
Yan Li
Beijing Institute of TechnologyCandidate of physico-mathematical sciences, Associate professor
Gang Tian
Beijing International Center for Mathematical Research, Peking University; School of Mathematical Sciences, Peking University
Xiaohua Zhu
Beijing International Center for Mathematical Research, Peking University; School of Mathematical Sciences, Peking University
References
- Chi Li, Chenyang Xu, “Special test-configurations and $K$-stability of Fano varieties”, Ann. of Math. (2), 180:1 (2014), 197–232
- S. T. Paul, “Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics”, Ann. of Math. (2), 175:1 (2012), 255–296
- S. T. Paul, A numerical criterion for $K$-energy maps of algebraic manifolds
- S. T. Paul, Gang Tian, “CM stability and the generalized Futaki invariant II”, Asterisque, 328, Soc. Math. France, Paris, 2009, 339–354
- Gang Tian, “Kähler–Einstein metrics with positive scalar curvature”, Invent. Math., 130:1 (1997), 1–37
- Gang Tian, “Kähler–Einstein metrics on Fano manifolds”, Jpn. J. Math., 10:1 (2015), 1–41
- G. Tian, On uniform $K$-stability of pairs
Supplementary files
