Entropy solution for equation with a measure valued potential in hyperbolic space

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

В гиперболическом пространстве рассматривается задача Дирихле для нелинейного эллиптического уравнения второго порядка с сингулярным мерозначным потенциалом. Ограничения на структуру уравнения формулируются в терминах обобщенной $N$-функции. Доказано существование энтропийного решения задачи.Библиография 16 названий.

作者简介

Venera Vildanova

Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Candidate of physico-mathematical sciences, Associate professor

Farit Mukminov

Bashkir State Pedagogical University n. a. M. Akmulla

Email: mfkh@rambler.ru
Doctor of physico-mathematical sciences, Professor

参考

  1. Ph. Benilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273
  2. N. Saintier, L. Veron, “Nonlinear elliptic equations with measure valued absorption potential”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 22:1 (2021), 351–397
  3. V. F. Vil'danova, F. Kh. Mukminov, “Perturbations of nonlinear elliptic operators by potentials in the space of multiplicators”, J. Math. Sci. (N.Y.), 257:5 (2021), 569–578
  4. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holder, Solvable models in quantum mechanics, With an appendix by P. Exner, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2005, xiv+488 pp.
  5. М. И. Нейман-заде, А. А. Шкаликов, “Операторы Шрeдингера с сингулярными потенциалами из пространств мультипликаторов”, Матем. заметки, 66:5 (1999), 723–733
  6. A. Malusa, M. M. Porzio, “Renormalized solutions to elliptic equations with measure data in unbounded domains”, Nonlinear Anal., 67:8 (2007), 2370–2389
  7. L. M. Kozhevnikova, “On solutions of elliptic equations with variable exponents and measure data in $mathbb R^n$”, Differential equations on manifolds and mathematical physics, Dedicated to the memory of B. Sternin, Trends Math., Birkhäuser/Springer, Cham, 2021, 221–239
  8. L. M. Kozhevnikova, “On solutions of anisotropic elliptic equations with variable exponent and measure data”, Complex Var. Elliptic Equ., 65:3 (2020), 333–367
  9. А. П. Кашникова, Л. М. Кожевникова, “Существование решений нелинейных эллиптических уравнений с данными в виде меры в пространствах Музилака–Орлича”, Матем. сб., 213:4 (2022), 38–73
  10. J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983, iii+222 pp.
  11. P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Math., 2236, Springer, Cham, 2019, x+167 pp.
  12. T. Aubin, Nonlinear analysis on manifolds. Monge–Ampère equations, Grundlehren Math. Wiss., 252, Springer-Verlag, New York, 1982, xii+204 pp.
  13. M. B. Benboubker, E. Azroul, A. Barbara, “Quasilinear elliptic problems with nonstandard growth”, Electron. J. Differential Equations, 2011, 62, 16 pp.
  14. Г. И. Лаптев, “Слабые решения квазилинейных параболических уравнений второго порядка с двойной нелинейностью”, Матем. сб., 188:9 (1997), 83–112
  15. Н. Данфорд, Дж. Т. Шварц, Линейные операторы. Общая теория, ИЛ, М., 1962, 895 с.
  16. Ж.-Л. Лионс, Некоторые методы решения нелинейных краевых задач, Мир, М., 1972, 587 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Вильданова В.F., Мукминов Ф.K., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».