Convergence of a sandpile model on a triangular lattice
- Авторлар: Aliev A.A.1, Kalinin N.S.2
-
Мекемелер:
- Saint-Petersburg State University, Department of Mathematics and Computer Science
- Guangdong Technion Israel Institute of Technology
- Шығарылым: Том 214, № 12 (2023)
- Беттер: 3-25
- Бөлім: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/147926
- DOI: https://doi.org/10.4213/sm9789
- ID: 147926
Дәйексөз келтіру
Аннотация
Авторлар туралы
Arkadiy Aliev
Saint-Petersburg State University, Department of Mathematics and Computer Science
Nikita Kalinin
Guangdong Technion Israel Institute of Technology
Email: nikaanspb@gmail.com
Әдебиет тізімі
- W. Pegden, Sandpile gallery
- D. Dhar, “Theoretical studies of self-organized criticality”, Phys. A, 369:1 (2006), 29–70
- S. Corry, D. Perkinson, Divisors and sandpiles. An introduction to chip-firing, AMS Non-Ser. Monogr., 114, Amer. Math. Soc., Providence, RI, 2018, xiv+325 pp.
- W. Pegden, C. K. Smart, “Convergence of the Abelian sandpile”, Duke Math. J., 162:4 (2013), 627–642
- H. Aleksanyan, H. Shahgholian, “Discrete balayage and boundary sandpile”, J. Anal. Math., 138:1 (2019), 361–403
- D. Dhar, P. Ruelle, S. Sen, D.-N. Verma, “Algebraic aspects of Abelian sandpile models”, J. Phys. A, 28:4 (1995), 805–831
- N. L. Biggs, “Chip-firing and the critical group of a graph”, J. Algebraic Combin., 9:1 (1999), 25–45
- R. Bacher, P. de la Harpe, T. Nagnibeda, “The lattice of integral flows and the lattice of integral cuts on a finite graph”, Bull. Soc. Math. France, 125:2 (1997), 167–198
- А. Д. Медных, И. А. Медных, “Циклические накрытия графов. Перечисление отмеченных остовных лесов и деревьев, индекс Кирхгофа и якобианы”, УМН, 78:3(471) (2023), 115–164
- M. Lang, M. Shkolnikov, “Harmonic dynamics of the abelian sandpile”, Proc. Natl. Acad. Sci. USA, 116:8 (2019), 2821–2830
- M. Lang, M. Shkolnikov, Sandpile monomorphisms and harmonic functions
- K. Schmidt, E. Verbitskiy, “Abelian sandpiles and the harmonic model”, Comm. Math. Phys., 292:3 (2009), 721–759
- N. Kalinin, V. Khramov, Sandpile group of infinite graphs
- A. A. Jarai, “Thermodynamic limit of the abelian sandpile model on $Z^d$”, Markov Process. Related Fields, 11:2 (2005), 313–336
- S. R. Athreya, A. A. Jarai, “Infinite volume limit for the stationary distribution of abelian sandpile models”, Comm. Math. Phys., 249:1 (2004), 197–213
- A. Fey, L. Levine, Y. Peres, “Growth rates and explosions in sandpiles”, J. Stat. Phys., 138:1-3 (2010), 143–159
- Y. Le Borgne, D. Rossin, “On the identity of the sandpile group”, Discrete Math., 256:3 (2002), 775–790
- L. Levine, Y. Peres, “Strong spherical asymptotics for rotor-router aggregation and the divisible sandpile”, Potential Anal., 30:1 (2009), 1–27
- L. Levine, W. Pegden, C. K. Smart, “Apollonian structure in the Abelian sandpile”, Geom. Funct. Anal., 26:1 (2016), 306–336
- L. Levine, W. Pegden, C. K. Smart, “The Apollonian structure of integer superharmonic matrices”, Ann. of Math. (2), 186:1 (2017), 1–67
- A. Melchionna, “The sandpile identity element on an ellipse”, Discrete Contin. Dyn. Syst., 42:8 (2022), 3709–3732
- W. Pegden, C. K. Smart, “Stability of patterns in the Abelian sandpile”, Ann. Henri Poincare, 21:4 (2020), 1383–1399
- W. Pegden, Sandpiles!
- A. Bou-Rabee, Integer superharmonic matrices on the $F$-lattice
- M. Kapovich, A. Kontorovich, “On superintegral Kleinian sphere packings, bugs, and arithmetic groups”, J. Reine Angew. Math., 2023:798 (2023), 105–142
- A. Bou-Rabee, “Dynamic dimensional reduction in the Abelian sandpile”, Comm. Math. Phys., 390:2 (2022), 933–958
- N. Kalinin, M. Shkolnikov, “Tropical curves in sandpiles”, C. R. Math. Acad. Sci. Paris, 354:2 (2016), 125–130
- N. Kalinin, M. Shkolnikov, “Introduction to tropical series and wave dynamic on them”, Discrete Contin. Dyn. Syst., 38:6 (2018), 2827–2849
- N. Kalinin, M. Shkolnikov, “Sandpile solitons via smoothing of superharmonic functions”, Comm. Math. Phys., 378:3 (2020), 1649–1675
- N. Kalinin, M. Shkolnikov, Tropical curves in sandpile models
- N. Kalinin, “Pattern formation and tropical geometry”, Front. Phys., 8 (2020), 581126, 10 pp.
- N. Kalinin, “Sandpile solitons in higher dimensions”, Arnold Math. J., 9:3 (2023), 435–454
- N. Kalinin, Shrinking dynamic on multidimensional tropical series
- T. Horiguchi, “Lattice Green's functions for the triangular and honeycomb lattices”, J. Math. Phys., 13:9 (1972), 1411–1419
- N. Azimi-Tafreshi, H. Dashti-Naserabadi, S. Moghimi-Araghi, P. Ruelle, “The Abelian sandpile model on the honeycomb lattice”, J. Stat. Mech. Theory Exp., 2010:02 (2010), P02004, 24 pp.
- A. Poncelet, P. Ruelle, “Sandpile probabilities on triangular and hexagonal lattices”, J. Phys. A, 51:1 (2018), 015002, 25 pp.
- L. C. Evans, Partial differential equations, Grad. Stud. Math., 19, 2nd ed., Amer. Math. Soc., Providence, RI, 2010, xxii+749 pp.
- L. A. Caffarelli, X. Cabre, Fully nonlinear elliptic equations, Amer. Math. Soc. Colloq. Publ., 43, Amer. Math. Soc., Providence, RI, 1995, vi+104 pp.
- L. Levine, Y. Peres, “Scaling limits for internal aggregation models with multiple sources”, J. Anal. Math., 111:1 (2010), 151–219
Қосымша файлдар
