Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 214, No 12 (2023)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Convergence of a sandpile model on a triangular lattice

Aliev A.A., Kalinin N.S.

Abstract

Мы даем обзор результатов о сходимости в песочных моделях. Мы доказываем для песочной модели на треугольной решетке результаты, аналогичные уже существующим для квадратной решетки. А именно: рассмотрим песочную модель на целых точках плоскости, положим $n$ песчинок в начало координат. Запустим процесс релаксации: если в некоторой вершине $z$ число песчинок не меньше ее степени (в этом случае говорим, что вершина $z$ нестабильна), перемещаем из $z$ в каждого из соседей $z$ по одной песчинке; повторяем эту операцию, пока есть нестабильные вершины. Мы доказываем, что носитель состояния $(n\delta_0)^\circ$, на котором процесс стабилизируется, растет со скоростью $\sqrt n$, и после ремасштабирования в $\sqrt n$ раз у $(n\delta_0)^\circ$ есть предел в $^*$-слабой топологии.Такой результат уже был показан У. Пежденом и Ч. К. Смартом для квадратной решетки (каждую вершину соединяем с четырьмя ближайшими соседями), мы распространяем его на треугольную (каждая вершина соединяется с шестью соседями) решетку.Библиография: 39 названий.
Matematicheskii Sbornik. 2023;214(12):3-25
pages 3-25 views

Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains

Baranov A.D., Kayumov I.R.

Abstract

В работе исследован ряд вопросов о поведении двойных интегралов от модулей производных ограниченных $n$-листных функций и, в частности, рациональных функций фиксированной степени $n$. Для областей со спрямляемыми границами найден точный порядок роста таких интегральных средних в зависимости от $n$. Получены верхние оценки для областей с фрактальными границами, зависящие от размерности Минковского границы области, показано, что в некоторых случаях они близки к точным. Найдены также нижние оценки в терминах спектра интегральных средних конформных отображений. Полученные неравенства усиливают классические результаты Е. П. Долженко (1966 г.), а также недавние результаты авторов. Библиография: 32 наименования.
Matematicheskii Sbornik. 2023;214(12):26-45
pages 26-45 views

The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}//(\mathbb C^{\ast})^n$ of the Grassmann manifolds $G_{n,2}$

Buchstaber V.M., Terzić; S.

Abstract

Комплексные многообразия Грассмана $G_{n,k}$ являются фундаментальными объектами в развитии взаимосвязей алгебраической геометрии и алгебраической топологии. Случай $k=2$ выделяется особо, так как многообразия $G_{n,2}$ обладают несколькими замечательными свойствами, отличающими их от многообразий с $k>2$. Эта статья посвящена результатам, существенно использующим специфику многообразий $G_{n,2}$. Они относятся к известным задачам о каноническом действии алгебраического тора $(\mathbb{C}^{\ast})^n$ на $G_{n,2}$ и индуцированном действии компактного тора $T^n\subset(\mathbb{C}^{\ast})^n$. М. Капранов доказал, что компактификацию Делиня–Мамфорда–Гротендика–Кнудсена $\overline{\mathcal{M}}(0,n)$ пространства рациональных стабильных кривых с $n$ пронумерованными отмеченными точками можно отождествить с фактором Чжоу $G_{n,2}//(\mathbb{C}^{\ast})^n$. В наших недавних работах было дано конструктивное описание пространства орбит $G_{n,2}/T^n$. В этом результате важную роль играют понятия комплекса допустимых многогранников $P_\sigma$, пространств параметров $F_\sigma$ и универсального пространства $\mathcal{F}_n$ параметров $T^n$-действия на $G_{n,2}$. В настоящей статье получена явная конструкция пространства $\mathcal{F}_n$ методом замечательной компактификации. На основе этой конструкции и описания пространства $\overline{\mathcal{M}}(0,n)$ из работы Киля мы получили явный диффеоморфизм между $\mathcal{F}_n$ и $\overline{\mathcal{M}}(0,n)$. Таким образом, получена реализация фактора Чжоу $G_{n,2}//(\mathbb{C}^{\ast})^n$ в виде пространства $\mathcal{F}_n$ со структурой, в описании которой участвуют допустимые многогранники $P_\sigma$ и пространства $F_\sigma$. Библиография: 32 названия.
Matematicheskii Sbornik. 2023;214(12):46-75
pages 46-75 views

On the spectrum of Landau Hamiltonian perturbed by a periodic electric potential

Danilov L.I.

Abstract

Исследуется спектр гамильтониана Ландау, возмущенного периодическим электрическим потенциалом $V\in L^2_{\mathrm{loc}}(\mathbb R^2;\mathbb R)$, если для потока однородного магнитного поля $B>0$ через элементарную ячейку $K$ решетки периодов потенциала $V$ выполняется условие $(2\pi)^{-1}Bv(K)=Q^{-1}$, $Q\in \mathbb N $, где $v(K)$ – площадь элементарной ячейки $K$. Для произвольных периодических потенциалов $V\in L^2_{\mathrm {loc}}(\mathbb R^2;\mathbb R)$ с нулевым средним значением $V_0=0$ доказано отсутствие в спектре собственных значений, не совпадающих с уровнями Ландау. Также для периодических потенциалов $V\in L^2_{\mathrm{loc}}(\mathbb R^2;\mathbb R)\setminus C^{\infty}(\mathbb R^2;\mathbb R)$ доказана абсолютная непрерывность спектра. Библиография: 23 названия.
Matematicheskii Sbornik. 2023;214(12):76-105
pages 76-105 views

Infinite elliptic hypergeometric series: convergence and diffrence equations

Krotkov D.I., Spiridonov V.P.

Abstract

В статье выводятся конечноразностные уравнения бесконечного порядка для тета-гипергеометрических рядов и исследуется пространство их решений. В общем случае такие ряды расходятся, нами описаны ограничения на параметры, при которых они сходятся. В частности, нами обобщен критерий Харди и Литтлвуда о сходимости $q$-гипергеометрических рядов при $|q|=1$, $q^n\neq 1$, на эллиптический уровень и доказана сходимость бесконечных $ _{r+1}V_r$ совершенно уравновешенных эллиптических гипергеометрических рядов для ограниченных значений $q$. Библиография: 13 названий.
Matematicheskii Sbornik. 2023;214(12):106-134
pages 106-134 views

Dual exceptional collections on Lagrangian Grassmannians

Fonarev A.V.

Abstract

Мы строим градуированные левые двойственные исключительные наборы к исключительным наборам, порождающим блоки Кузнецова и Полищука на лагранжевых грассманианах. В качестве приложения мы строим явные резольвенты для некоторых естественных неприводимых эквивариантных векторных расслоений. Библиография: 13 названий.
Matematicheskii Sbornik. 2023;214(12):135-158
pages 135-158 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».