The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}//(\mathbb C^{\ast})^n$ of the Grassmann manifolds $G_{n,2}$

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Комплексные многообразия Грассмана $G_{n,k}$ являются фундаментальными объектами в развитии взаимосвязей алгебраической геометрии и алгебраической топологии. Случай $k=2$ выделяется особо, так как многообразия $G_{n,2}$ обладают несколькими замечательными свойствами, отличающими их от многообразий с $k>2$. Эта статья посвящена результатам, существенно использующим специфику многообразий $G_{n,2}$. Они относятся к известным задачам о каноническом действии алгебраического тора $(\mathbb{C}^{\ast})^n$ на $G_{n,2}$ и индуцированном действии компактного тора $T^n\subset(\mathbb{C}^{\ast})^n$. М. Капранов доказал, что компактификацию Делиня–Мамфорда–Гротендика–Кнудсена $\overline{\mathcal{M}}(0,n)$ пространства рациональных стабильных кривых с $n$ пронумерованными отмеченными точками можно отождествить с фактором Чжоу $G_{n,2}//(\mathbb{C}^{\ast})^n$. В наших недавних работах было дано конструктивное описание пространства орбит $G_{n,2}/T^n$. В этом результате важную роль играют понятия комплекса допустимых многогранников $P_\sigma$, пространств параметров $F_\sigma$ и универсального пространства $\mathcal{F}_n$ параметров $T^n$-действия на $G_{n,2}$. В настоящей статье получена явная конструкция пространства $\mathcal{F}_n$ методом замечательной компактификации. На основе этой конструкции и описания пространства $\overline{\mathcal{M}}(0,n)$ из работы Киля мы получили явный диффеоморфизм между $\mathcal{F}_n$ и $\overline{\mathcal{M}}(0,n)$. Таким образом, получена реализация фактора Чжоу $G_{n,2}//(\mathbb{C}^{\ast})^n$ в виде пространства $\mathcal{F}_n$ со структурой, в описании которой участвуют допустимые многогранники $P_\sigma$ и пространства $F_\sigma$. Библиография: 32 названия.

About the authors

Victor Matveevich Buchstaber

Steklov Mathematical Institute of Russian Academy of Sciences; HSE University

Email: buchstab@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

Svjetlana Terzić;

University of Montenegro

Email: sterzic@rc.pmf.cg.ac.yu
Candidate of physico-mathematical sciences

References

  1. V. M. Buchstaber, S. Terzic, “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $mathbb CP^5$”, Mosc. Math. J., 16:2 (2016), 237–273
  2. V. M. Buchstaber, S. Terzic, “Toric topology of the complex Grassmann manifolds”, Mosc. Math. J., 19:3 (2019), 397–463
  3. В. М. Бухштабер, С. Терзич, “Основания $(2n, k)$-многообразий”, Матем. сб., 210:4 (2019), 41–86
  4. V. M. Buchstaber, A. P. Veselov, Chern–Dold character in complex cobordisms and theta divisors
  5. В. М. Бухштабер, С. Терзич, “Разрешение особенностей пространств орбит $G_{n,2}/T^n$”, Труды МИАН, 317, Торическая топология действия групп, геометрия и комбинаторика, Ч. 1 (2022), 27–63
  6. T. Coates, A. Givental, “Quantum cobordisms and formal group laws”, The unity of mathematics, Progr. Math., 244, Birkhäuser Boston, Inc., Boston, MA, 2006, 155–171
  7. C. De Concini, C. Procesi, “Complete symmetric varieties”, Invariant theory (Montecatini, 1982), Lecture Notes in Math., 996, Springer-Verlag, Berlin, 1983, 1–44
  8. C. De Concini, C. Procesi, “Wonderful models of subspace arrangements”, Selecta Math. (N.S.), 1:3 (1995), 459–494
  9. C. De Concini, C. Procesi, “Hyperplane arrangements and holonomy equations”, Selecta Math. (N.S.), 1:3 (1995), 495–535
  10. C. De Concini, G. Gaiffi, “Projective wonderful models for toric arrangements”, Adv. Math., 327 (2018), 390–409
  11. C. De Concini, G. Gaiffi, “Cohomology rings of compactifications of toric arrangements”, Algebr. Geom. Topol., 19:1 (2019), 503–532
  12. C. De Concini, G. Gaiffi, O. Papini, “On projective wonderful models for toric arrangements and their cohomology”, Eur. J. Math., 6:3 (2020), 790–816
  13. W. Fulton, R. MacPherson, “A compactification of configuration space”, Ann. of Math. (2), 139:1 (1994), 183–225
  14. I. M. Gelfand, R. D. MacPherson, “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. Math., 44:3 (1982), 279–312
  15. И. М. Гельфанд, В. В. Серганова, “Комбинаторные геометрии и страты тора на однородных компактных многообразиях”, УМН, 42:2(254) (1987), 107–134
  16. I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp.
  17. M. Goresky, R. MacPherson, “On the topology of algebraic torus actions”, Algebraic groups (Utrecht, 1986), Lecture Notes in Math., 1271, Springer-Verlag, Berlin, 1987, 73–90
  18. Yi Hu, “Topological aspects of Chow quotients”, J. Differential Geom., 69:3 (2005), 399–440
  19. M. M. Kapranov, “Chow quotients of Grassmannians. I”, I. M. Gel'fand seminar, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 29–110
  20. M. M. Kapranov, “Veronese curves and Grothendieck–Knudsen moduli space $overline{M}_(0,n)$”, J. Alebraic Geom., 2:2 (1993), 239–262
  21. М. Э. Казарян, С. К. Ландо, В. В. Прасолов, Алгебраические кривые. По направлению к пространствам модулей, МЦНМО, М., 2019, 272 с.
  22. S. Keel, “Intersection theory of moduli space of stable $N$-pointed curves of genus zero”, Trans. Amer. Math. Soc., 330:2 (1992), 545–574
  23. S. Keel, J. Tevelev, “Geometry of Chow quotients of Grassmannians”, Duke Math. J., 134:2 (2006), 259–311
  24. S. Keel, J. McKernan, “Contractible extremal rays on $overline{M}_(0,n)$”, Handbook of moduli, v. 2, Adv. Lect. Math. (ALM), 25, Int. Press, Somerville, MA; Higher Education Press, Beijing, 2013, 115–130
  25. N. Klemyatin, Universal spaces of parameters for complex Grassmann manifolds $G_{q+1,2}$
  26. J. M. Landsberg, L. Manivel, “The projective geometry of Freudenthal's magic square”, J. Agebra, 239:2 (2001), 477–512
  27. Li Li, “Wonderful compactification of an arrangement of subvarieties”, Michigan Math. J., 58:2 (2009), 535–563
  28. D. Luna, Th. Vust, “Plongements d'espaces homogènes”, Comment. Math. Helv., 58:2 (1983), 186–245
  29. D. McDuff, D. Salamon, $J$-holomorphic curves and symplectic topology, Amer. Math. Soc. Colloq. Publ., 52, Amer. Math. Soc., Providence, RI, 2004, xii+669 pp.
  30. H. Süss, “Toric topology of the Grassmannian of planes in $mathbb{C}^{5}$ and the del Pezzo surface of degree $5$”, Mosc. Math. J., 21:3 (2021), 639–652
  31. D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia Math. Sci., 138, Invariant Theory Algebr. Transform. Groups, 8, Springer, Heidelberg, 2011, xxii+253 pp.
  32. Ф. Л. Зак, “Многообразия Севери”, Матем. сб., 126(168):1 (1985), 115–132

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Бухштабер В.M., Терзич С.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».