Asymptotic behaviour of the survival probability of almost critical branching processes in a random environment
- Authors: Kharlamov V.V.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 215, No 1 (2024)
- Pages: 131-152
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/251797
- DOI: https://doi.org/10.4213/sm9923
- ID: 251797
Cite item
Abstract
A generalization of the well-known result concerning the survival probability of a critical branching process in random environment $Z_k$ is considered. The triangular array scheme of branching processes in random environment $Z_{k,n}$ that are close to $Z_k$ for large n is studied. The equivalence of the survival probabilities for the processes $Z_{n,n}$ and $Z_n$ is obtained under rather natural assumptions on the closeness of Zk,n and Zk.
Keywords
About the authors
Victor Vladimirovich Kharlamov
Steklov Mathematical Institute of Russian Academy of Sciences
Author for correspondence.
Email: math-net2025_06@mi-ras.ru
without scientific degree, no status
References
- М. В. Козлов, “Об асимптотике вероятности невырождения критических ветвящихся процессов в случайной среде”, Теория вероятн. и ее примен., 21:4 (1976), 813–825
- J. Geiger, G. Kersting, “The survival probability of a critical branching process in random environment”, Теория вероятн. и ее примен., 45:3 (2000), 607–615
- V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673
- G. Kersting, V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., John Wiley & Sons, London; ISTE, Hoboken, NJ, 2017, xiv+286 pp.
- D. Denisov, A. Sakhanenko, V. Wachtel, “First-passage times for random walks with nonidentically distributed increments”, Ann. Probab., 46:6 (2018), 3313–3350
- В. В. Петров, Суммы независимых случайных величин, Наука, М., 1972, 414 с.
- А. В. Скороход, “Предельные теоремы для случайных процессов”, Теория вероятн. и ее примен., 1:3 (1956), 289–319
Supplementary files
