Producing new semi-orthogonal decompositions in arithmetic geometry
- Authors: Bondarko M.V.1,2
-
Affiliations:
- Saint Petersburg State University
- St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 215, No 4 (2024)
- Pages: 81-116
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/255290
- DOI: https://doi.org/10.4213/sm9752
- ID: 255290
Cite item
Abstract
About the authors
Mikhail Vladimirovich Bondarko
Saint Petersburg State University; St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Email: mbond77@mail.ru
Doctor of physico-mathematical sciences, no status
References
- A. A. Beilinson, J. Bernstein, P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces (Luminy, 1981), v. I, Asterisque, 100, Soc. Math. France, Paris, 1982, 5–171
- D. Bergh, O. M. Schnürer, “Conservative descent for semi-orthogonal decompositions”, Adv. Math., 360 (2020), 106882, 39 pp.
- M. Bökstedt, A. Neeman, “Homotopy limits in triangulated categories”, Compos. Math., 86:2 (1993), 209–234
- А. И. Бондал, “Представления ассоциативных алгебр и когерентные пучки”, Изв. АН СССР. Сер. матем., 53:1 (1989), 25–44
- А. И. Бондал, М. М. Капранов, “Представимые функторы, функторы Серра и перестройки”, Изв. АН СССР. Сер. матем., 53:6 (1989), 1183–1205
- A. I. Bondal, M. Van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36
- M. V. Bondarko, “Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)”, J. K-theory, 6:3 (2010), 387–504
- M. V. Bondarko, On $t$-structures adjacent and orthogonal to weight structures
- M. V. Bondarko, Producing “new” semi-orthogonal decompositions in arithmetic geometry
- M. V. Bondarko, V. A. Sosnilo, “On purely generated $alpha$-smashing weight structures and weight-exact localizations”, J. Algebra, 535 (2019), 407–455
- A. J. de Jong, “Smoothness, semi-stability and alterations”, Inst. Hautes Etudes Sci. Publ. Math., 83 (1996), 51–93
- R. Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, with an appendix by P. Deligne, Lecture Notes in Math., 20, Springer-Verlag, Berlin–New York, 1966, vii+423 pp.
- J. Karmazyn, A. Kuznetsov, E. Shinder, “Derived categories of singular surfaces”, J. Eur. Math. Soc. (JEMS), 24:2 (2022), 461–526
- B. Keller, “On differential graded categories”, International congress of mathematicians, v. II, Eur. Math. Soc. (EMS), Zürich, 2006, 151–190
- H. Krause, “Smashing subcategories and the telescope conjecture – an algebraic approach”, Invent. Math., 139:1 (2000), 99–133
- A. Kuznetsov, “Base change for semiorthogonal decompositions”, Compos. Math., 147:3 (2011), 852–876
- T. Y. Lam, Lectures on modules and rings, Grad. Texts in Math., 189, Reprint of the 1st ed., Springer-Verlag, New York, 2012, xxiv+557 pp.
- A. Neeman, “The Grothendieck duality theorem via Bousfield's techniques and Brown representability”, J. Amer. Math. Soc., 9:1 (1996), 205–236
- A. Neeman, “On a theorem of Brown and Adams”, Topology, 36:3 (1997), 619–645
- A. Neeman, Triangulated categories, Ann. of Math. Stud., 148, Princeton Univ. Press, Princeton, NJ, 2001, viii+449 pp.
- A. Neeman, Triangulated categories with a single compact generator and a Brown representability theorem
- A. Neeman, The category $[mathcal{T}^c]^{mathrm{op}}$ as functors on $mathcal{T}^{b}_c$
- Д. О. Орлов, “Триангулированные категории особенностей и эквивалентности между моделями Ландау–Гинзбурга”, Матем. сб., 197:12 (2006), 117–132
- L. Positselski, O. M. Schnürer, “Unbounded derived categories of small and big modules: is the natural functor fully faithful?”, J. Pure Appl. Algebra, 225:11 (2021), 106722, 23 pp.
- R. G. Swan, “K-theory of coherent rings”, J. Algebra Appl., 18:9 (2019), 1950161, 16 pp.
- R. Takahashi, “Classifying subcategories of modules over a commutative Noetherian ring”, J. Lond. Math. Soc. (2), 78:3 (2008), 767–782
- M. Temkin, “Desingularization of quasi-excellent schemes in characteristic zero”, Adv. Math., 219:2 (2008), 488–522
- M. Temkin, “Tame distillation and desingularization by $p$-alterations”, Ann. of Math. (2), 186:1 (2017), 97–126
- R. W. Thomason, T. Trobaugh, “Higher algebraic K-theory of schemes and of derived categories”, The Grothendieck Festschrift, A collection of articles written in honor of the 60th birthday of A. Grothendieck, v. III, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990, 247–435
- The Stacks project
Supplementary files
