Траекторные инварианты биллиардов и линейно интегрируемые геодезические потоки
- Авторы: Белозеров Г.В.1, Фоменко А.Т.1,2
-
Учреждения:
- Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
- Московский центр фундаментальной и прикладной математики
- Выпуск: Том 215, № 5 (2024)
- Страницы: 3-46
- Раздел: Статьи
- URL: https://journal-vniispk.ru/0368-8666/article/view/255923
- DOI: https://doi.org/10.4213/sm10034
- ID: 255923
Цитировать
Аннотация
Об авторах
Глеб Владимирович Белозеров
Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
Анатолий Тимофеевич Фоменко
Московский государственный университет имени М. В. Ломоносова, механико-математический факультет; Московский центр фундаментальной и прикладной математики
Email: fomenko@mech.math.msu.su
доктор физико-математических наук, профессор
Список литературы
- А. Т. Фоменко, “Биллиарды переменной конфигурации в гамильтоновой геометрии и топологии”, Международная конференция “Лобачевские чтения”. Сборник трудов (Казань, 2022), Труды Математического центра имени Н. И. Лобачевского, 62, Изд-во КФУ, Казань, 2022, 112–115
- А. Т. Фоменко, “Биллиарды переменной конфигурации и биллиарды с проскальзыванием в гамильтоновой геометрии и топологии”, Математика и теоретические компьютерные науки, 1:1 (2023), 49–68
- А. Т. Фоменко, В. В. Ведюшкина, “Биллиарды и интегрируемые системы”, УМН, 78:5(473) (2023), 93–176
- А. Т. Фоменко, В. В. Ведюшкина, “Эволюционные силовые биллиарды”, Изв. РАН. Сер. матем., 86:5 (2022), 116–156
- A. T. Fomenko, V. A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, Eur. J. Math., 8:4 (2022), 1392–1423
- В. А. Кибкало, А. Т. Фоменко, И. С. Харчева, “Реализация интегрируемых гамильтоновых систем биллиардными книжками”, Тр. ММО, 82, № 1, МЦНМО, М., 2021, 45–78
- V. Dragovic, M. Radnovic, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494
- В. Драгович, М. Раднович, Интегрируемые биллиарды, квадрики и многомерные поризмы Понселе, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2010, 338 с.
- V. Dragovic, S. Gasiorek, M. Radnovic, “Billiard ordered games and books”, Regul. Chaotic Dyn., 27:2 (2022), 132–150
- В. В. Фокичева, “Описание особенностей системы “биллиард в эллипсе” ”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2012, № 5, 31–34
- В. В. Фокичева, “Классификация биллиардных движений в областях, ограниченных софокусными параболами”, Матем. сб., 205:8 (2014), 139–160
- В. В. Фокичева, “Описание особенностей системы бильярда в областях, ограниченных софокусными эллипсами или гиперболами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2014, № 4, 18–27
- В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176
- В. В. Ведюшкина, “Слоение Лиувилля невыпуклых топологических биллиардов”, Докл. РАН, 478:1 (2018), 7–11
- В. В. Ведюшкина, “Инварианты Фоменко–Цишанга топологических бильярдов, ограниченных софокусными параболами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2018, № 4, 22–28
- В. В. Ведюшкина, “Инварианты Фоменко–Цишанга невыпуклых топологических биллиардов”, Матем. сб., 210:3 (2019), 17–74
- В. А. Кибкало, “Топология аналога случая интегрируемости Ковалевской на алгебре Ли $operatorname{so}(4)$ при нулевой постоянной площадей”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 3, 46–50
- В. А. Кибкало, “Топологическая классификация слоений Лиувилля для интегрируемого случая Ковалевской на алгебре Ли $operatorname{so}(4)$”, Матем. сб., 210:5 (2019), 3–40
- В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56
- И. Ф. Кобцев, “Геодезический поток двумерного эллипсоида в поле упругой силы: топологическая классификация решений”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2018, № 2, 27–33
- С. Е. Пустовойтов, “Топологический анализ биллиарда в эллиптическом кольце в потенциальном поле”, Фундамент. и прикл. матем., 22:6 (2019), 201–225
- Г. В. Белозеров, “Топологическая классификация интегрируемых геодезических биллиардов на квадриках в трeхмерном евклидовом пространстве”, Матем. сб., 211:11 (2020), 3–40
- В. В. Ведюшкина, В. Н. Завьялов, “Реализация геодезических потоков с линейным интегралом биллиардами с проскальзыванием”, Матем. сб., 213:12 (2022), 31–52
- В. Н. Завьялов, “Биллиард с проскальзыванием на любой рациональный угол”, Матем. сб., 214:9 (2023), 3–26
- Е. Е. Каргинова, “Слоение Лиувилля топологических биллиардов на плоскости Минковского”, Фундамент. и прикл. матем., 22:6 (2019), 123–150
- Е. Е. Каргинова, “Биллиарды, ограниченные дугами софокусных квадрик на плоскости Минковского”, Матем. сб., 211:1 (2020), 3–31
- Дж. Д. Биркгоф, Динамические системы, Изд. дом “Удмуртский университет”, Ижевск, 1999, 408 с.
- В. В. Козлов, Д. В. Трещев, Биллиарды. Генетическое введение в динамику систем с ударами, Изд-во Моск. ун-та, М., 1991, 168 с.
- С. Е. Пустовойтов, “Топологический анализ эллиптического бильярда в потенциальном поле четвертого порядка”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2021, № 5, 8–19
- С. Е. Пустовойтов, “Топологический анализ биллиарда, ограниченного софокусными квадриками, в потенциальном поле”, Матем. сб., 212:2 (2021), 81–105
- В. В. Ведюшкина, С. Е. Пустовойтов, “Классификация слоений Лиувилля интегрируемых топологических биллиардов в магнитном поле”, Матем. сб., 214:2 (2023), 23–57
- Г. В. Белозеров, “Топологическая классификация биллиардов в трехмерном евклидовом пространстве, ограниченных софокусными квадриками”, Матем. сб., 213:2 (2022), 3–36
- Г. В. Белозеров, “Топология изоэнергетических $5$-поверхностей трехмерного бильярда внутри трехосного эллипсоида с потенциалом Гука”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2022, № 6, 21–31
- А. Т. Фоменко, В. В. Ведюшкина, “Бильярды и интегрируемость в геометрии и физике. Новый взгляд и новые возможности”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2019, № 3, 15–25
- В. В. Ведюшкина, А. Т. Фоменко, И. С. Харчева, “Моделирование невырожденных бифуркаций замыканий решений интегрируемых систем с двумя степенями свободы интегрируемыми топологическими биллиардами”, Докл. РАН, 479:6 (2018), 607–610
- А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
- В. В. Ведюшкина, “Траекторные инварианты плоских бильярдов, ограниченных дугами софокусных квадрик и содержащих фокусы”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2021, № 4, 48–51
- В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67
- V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp.
- Е. А. Кудрявцева, “Интегрируемые по Лиувиллю обобщенные биллиардные потоки и теоремы типа Понселе”, Фундамент. и прикл. матем., 20:3 (2015), 113–152
- А. Т. Фоменко, Х. Цишанг, “Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы”, Изв. АН СССР. Сер. матем., 54:3 (1990), 546–575
- V. Dragovic, M. Radnovic, “Minkowski plane, confocal conics, and billiards”, Publ. Inst. Math. (Beograd) (N.S.), 94:108 (2013), 17–30
- V. Dragovic, M. Radnovic, “Bicentennial of the Great Poncelet Theorem (1813–2013): current advances”, Bull. Amer. Math. Soc. (N.S.), 51:3 (2014), 373–445
- V. Dragovic, M. Radnovic, “Periods of pseudo-integrable billiards”, Arnold Math. J., 1:1 (2015), 69–73
- В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые геодезические потоки на ориентируемых двумерных поверхностях и топологические биллиарды”, Изв. РАН. Сер. матем., 83:6 (2019), 63–103
Дополнительные файлы
