On an extremal problem for positive definite functions with support in a ball

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Рассматривается экстремальная задача, связанная с множеством непрерывных положительно определенных функций на $\mathbb{R}^n$, носитель которых содержится в замкнутом шаре радиуса $r>0$, а значение в нуле фиксировано (класс $\mathfrak{F}_r(\mathbb{R}^n)$).При фиксированном $r>0$ требуется найти точную верхнюю грань функционала специального вида на множестве $\mathfrak{F}_r(\mathbb{R}^n)$.Получено общее решение данной задачи при $n\neq2$. Как следствие получены новые точные неравенства для производных целых функций экспоненциального сферического типа $\leqslant r$.Библиография: 24 названия.

Авторлар туралы

Anatoliy Manov

Saint Petersburg State University

without scientific degree, no status

Әдебиет тізімі

  1. Z. Sasvari, Multivariate characteristic and correlation functions, De Gruyter Stud. Math., 50, Walter de Gruyter & Co., Berlin, 2013, x+366 pp.
  2. C. L. Siegel, “Über Gitterpunkte in convexen Körpern und ein damit zusammenhängendes Extremalproblem”, Acta Math., 65:1 (1935), 307–323
  3. R. P. Boas, Jr., M. Kac, “Inequalities for Fourier transforms of positive functions”, Duke Math. J., 12:1 (1945), 189–206
  4. Д. В. Горбачев, “Экстремальная задача для периодических функций с носителем в шаре”, Матем. заметки, 69:3 (2001), 346–352
  5. J.-P. Gabardo, “The Turan problem and its dual for positive definite functions supported on a ball in $mathbb R^d$”, J. Fourier Anal. Appl., 30:1 (2024), 11, 31 pp.
  6. A. A. Arestov, E. E. Berdysheva, “The Turan problem for a class of polytopes”, East J. Approx., 8:3 (2002), 381–388
  7. M. Kolountzakis, S. G. Revesz, “On a problem of Turan about positive definite functions”, Proc. Amer. Math. Soc., 131:11 (2003), 3423–3430
  8. G. Bianchi, M. Kelly, “A Fourier analytic proof of the Blaschke–Santalo inequality”, Proc. Amer. Math. Soc., 143:11 (2015), 4901–4912
  9. D. V. Gorbachev, S. Yu. Tikhonov, “Wiener's problem for positive definite functions”, Math. Z., 289:3-4 (2018), 859–874
  10. А. В. Ефимов, “Вариант задачи Турана для положительно-определенных функций нескольких переменных”, Тр. ИММ УрО РАН, 17, № 3, 2011, 136–154
  11. S. G. Revesz, “Turan's extremal problem on locally compact abelian groups”, Anal. Math., 37:1 (2011), 15–50
  12. А. Д. Манов, “Об одной экстремальной задаче для положительно определeнных функций”, Чебышевский сб., 22:5 (2021), 161–171
  13. O. Szasz, “Über harmonische Funktionen und $L$-Formen”, Math. Z., 1:2-3 (1918), 149–162
  14. Z. Sasvari, Positive definite and definitizable functions, Math. Top., 2, Akademie Verlag, Berlin, 1994, 208 pp.
  15. R. M. Trigub, E. S. Bellinsky, Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht, 2004, xiv+585 pp.
  16. W. Rudin, “An extension theorem for positive-definite functions”, Duke Math. J., 37 (1970), 49–53
  17. W. Ehm, T. Gneiting, D. Richards, “Convolution roots of radial positive definite functions with compact support”, Trans. Amer. Math. Soc., 356:11 (2004), 4655–4685
  18. А. В. Ефимов, “Аналог теоремы Рудина для непрерывных радиальных положительно определенных функций нескольких переменных”, Тр. ИММ УрО РАН, 18, № 4, 2012, 172–179
  19. М. Г. Крейн, “О проблеме продолжения эрмитово положительных непрерывных функций”, Докл. АН СССР, 26:1 (1940), 17–22
  20. L. Golinskii, M. Malamud, L. Oridoroga, “Radial positive definite functions and Schoenberg matrices with negative eigenvalues”, Trans. Amer. Math. Soc., 370:1 (2018), 1–25
  21. С. М. Никольский, Приближение функций многих переменных и теоремы вложения, Наука, М., 1969, 480 с.
  22. И. И. Ибрагимов, “Экстремальные задачи в классе целых функций конечной степени”, Изв. АН СССР. Сер. матем., 23:2 (1959), 243–256
  23. J. Korevaar, “An inequality for entire functions of exponential type”, Nieuw Arch. Wiskunde (2), 23:2 (1949), 55–62
  24. Д. В. Горбачев, “Точные неравенства Бернштейна–Никольского для полиномов и целых функций экспоненциального типа”, Чебышевский сб., 22:5 (2021), 58–110

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Манов А.D., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».