Autopolar conic bodies and polyhedra

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An antinorm in a linear space is a concave analogue of a norm. In contrast to norms, antinorms are not defined on the whole space $\mathbb{R}^d$ but on a cone $K\subset \mathbb{R}^d$. They are applied to functional analysis, optimal control and dynamical systems. Level sets of antinorms are called conic bodies and (in the case of piecewise-linear antinorms) conic polyhedra. The basic facts and notions of the ‘concave analysis’ of antinorms such as separation theorems, duality, polars, Minkowski functionals, and so on, are similar to the ones in the standard convex analysis. There are, however, some significant differences. One of them is the existence of many self-dual objects. We prove that there are infinitely many families of autopolar conic bodies and polyhedra in the cone $K=\mathbb{R}^d_+$. For $d=2$ this gives a complete classification of self-dual antinorms, while for $d\ge 3$ there are counterexamples. Bibliography: 29 titles.

About the authors

Maksim Sergeevich Makarov

Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia;

Author for correspondence.
Email: maximka1905@mail.ru

Vladimir Yur'evich Protasov

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Email: v-protassov@yandex.ru
Doctor of physico-mathematical sciences, no status

References

  1. F. Blanchini, C. Savorgnan, “Stabilizability of switched linear systems does not imply the existence of convex Lyapunov functions”, Automatica J. IFAC, 44:4 (2008), 1166–1170
  2. J.-C. Bourin, F. Hiai, “Norm and anti-norm inequalities for positive semi-definite matrices”, Internat. J. Math., 22:8 (2011), 1121–1138
  3. J.-C. Bourin, F. Hiai, “Jensen and Minkowski inequalities for operator means and anti-norms”, Linear Algebra Appl., 456 (2014), 22–53
  4. J.-C. Bourin, F. Hiai, “Anti-norms on finite von Neumann algebras”, Publ. Res. Inst. Math. Sci., 51:2 (2015), 207–235
  5. M. Della Rossa, R. M. Jungers, “Almost sure stability of stochastic switched systems: graph lifts-based approach”, 2022 IEEE 61st conference on decision and control (CDC) (Cancun, 2022), IEEE, 1021–1026
  6. E. Fornasini, M. E. Valcher, “Stability and stabilizability criteria for discrete-time positive switched systems”, IEEE Trans. Automat. Control, 57:5 (2012), 1208–1221
  7. H. Hennion, “Limit theorems for products of positive random matrices”, Ann. Probab., 25:4 (1997), 1545–1587
  8. N. Guglielmi, L. Laglia, V. Protasov, “Polytope Lyapunov functions for stable and for stabilizable LSS”, Found. Comput. Math., 17:2 (2017), 567–623
  9. N. Guglielmi, V. Protasov, “Exact computation of joint spectral characteristics of linear operators”, Found. Comput. Math., 13:1 (2013), 37–97
  10. N. Guglielmi, M. Zennaro, “Canonical construction of polytope Barabanov norms and antinorms for sets of matrices”, SIAM J. Matrix Anal. Appl., 36:2 (2015), 634–655
  11. N. Guglielmi, M. Zennaro, “An antinorm theory for sets of matrices: bounds and approximations to the lower spectral radius”, Linear Algebra Appl., 607 (2020), 89–117
  12. V. Yu. Protasov, R. M. Jungers, “Lower and upper bounds for the largest Lyapunov exponent of matrices”, Linear Algebra Appl., 438:11 (2013), 4448–4468
  13. D. Liberzon, Switching in systems and control, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 2003, xiv+233 pp.
  14. Hai Lin, P. J. Antsaklis, “Stability and stabilizability of switched linear systems: a survey of recent results”, IEEE Trans. Automat. Control, 54:2 (2009), 308–322
  15. Л. В. Локуциевский, “Выпуклая тригонометрия с приложениями к субфинслеровой геометрии”, Матем. сб., 210:8 (2019), 120–148
  16. М. С. Макаров, “Антинормы и автополярные многогранники”, Сиб. матем. журн., 64:5 (2023), 1050–1064
  17. H. Martini, K. J. Swanepoel, “Antinorms and Radon curves”, Aequationes Math., 72:1-2 (2006), 110–138
  18. J. K. Merikoski, “On $l_{p1,p2}$ antinorms of nonnegative matrices”, Linear Algebra Appl., 140 (1990), 31–44
  19. J. K. Merikoski, “On c-norms and c-antinorms on cones”, Linear Algebra Appl., 150 (1991), 315–329
  20. J. K. Merikoski, G. de Oliveira, “On $k$-major norms and $k$-minor antinorms”, Linear Algebra Appl., 176 (1992), 197–209
  21. A. P. Molchanov, Ye. S. Pyatnitskiy, “Criteria of asymptotic stability of differential and difference inclusions encountered in control theory”, Systems Control Lett., 13:1 (1989), 59–64
  22. M. Moszynska, W.-D. Richter, “Reverse triangle inequality. Antinorms and semi-antinorms”, Studia Sci. Math. Hungar., 49:1 (2012), 120–138
  23. E. Plischke, F. Wirth, “Duality results for the joint spectral radius and transient behavior”, Linear Algebra Appl., 428:10 (2008), 2368–2384
  24. В. Ю. Протасов, “Инвариантные функционалы случайных матриц”, Функц. анализ и его прил., 44:3 (2010), 84–88
  25. В. Ю. Протасов, “Инвариантные функции для показателей Ляпунова случайных матриц”, Матем. сб., 202:1 (2011), 105–132
  26. В. Ю. Протасов, “Асимптотика произведений неотрицательных случайных матриц”, Функц. анализ и его прил., 47:2 (2013), 68–79
  27. V. Yu. Protasov, “Antinorms on cones: duality and applications”, Linear Multilinear Algebra, 70:22 (2022), 7387–7413
  28. W.-D. Richter, “Convex and radially concave contoured distributions”, J. Probab. Stat., 2015 (2015), 165468, 12 pp.
  29. E. De Santis, M. D. Di Benedetto, G. Pola, “Stabilizability of linear switching systems”, Nonlinear Anal. Hybrid Syst., 2:3 (2008), 750–764

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Makarov M.S., Protasov V.Y.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).