On some Carlson-type inequalities
- Authors: Osipenko K.Y.1,2
-
Affiliations:
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
- Issue: Vol 216, No 3 (2025)
- Pages: 177-190
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/306692
- DOI: https://doi.org/10.4213/sm10198
- ID: 306692
Cite item
Abstract
We find the sharp constant in the inequalitywhere $T$ is a cone in $\mathbb R^d$ and the weights $w(\cdot)$, $w_0(\cdot)$ and $\varphi_j(\cdot)$, $j=1,…,d$, are homogeneous measurable functions. We also obtain similar inequalities for some differential operators. Bibliography: 7 titles.
About the authors
Konstantin Yur'evich Osipenko
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
Author for correspondence.
Email: kosipenko@yahoo.com
Doctor of physico-mathematical sciences, Professor
References
- F. Carlson, “Une inegalite”, Ark. Mat. Astron. Fys. B, 25 (1935), 1, 5 pp.
- В. И. Левин, “Точные константы в неравенствах типа Карлсона”, Докл. АН CCCP, 59:4 (1948), 635–638
- Ф. И. Андрианов, “Многомерные аналоги неравенства Карлсона и его обобщений”, Изв. вузов. Матем., 1967, № 1, 3–7
- S. Barza, V. Burenkov, J. Pečaric, L.-E. Persson, “Sharp multidimensional multiplicative inequalities for weighted $L_p$ spaces with homogeneous weights”, Math. Inequal. Appl., 1:1 (1998), 53–67
- K. Yu. Osipenko, “Optimal recovery of operators and multidimensional Carlson type inequalities”, J. Complexity, 32:1 (2016), 53–73
- K. Yu. Osipenko, “Inequalities for derivatives with the Fourier transform”, Appl. Comput. Harmon. Anal., 53 (2021), 132–150
- K. Yu. Osipenko, “Optimal recovery and generalized Carlson inequality for weights with symmetry properties”, J. Complexity, 81 (2024), 101807, 35 pp.
Supplementary files
