Universal equivalence of general linear groups over local rings with 1/2
- Authors: Kaleeva G.A.1
-
Affiliations:
- Lomonosov Moscow State University, Moscow, Russia
- Issue: Vol 216, No 10 (2025)
- Pages: 29-41
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/331244
- DOI: https://doi.org/10.4213/sm9695
- ID: 331244
Cite item
Abstract
It is proved that the universal equivalence of full linear groups of order strictly greater than 2 over local, not necessarily commutative rings with 1/2 is equivalent to the coincidence of their orders and the universal equivalence of the respective rings or the universal equivalence of one ring to the ring opposite to the other.
About the authors
Galina Anatol'evna Kaleeva
Lomonosov Moscow State University, Moscow, Russia
Email: galinakaleeva@yandex.ru
without scientific degree, no status
References
- C. I. Beidar, A. V. Michalev, “On Malcev's theorem on elementary equivalence of linear groups”, Proceedings of the international conference on algebra, Part 1 (Novosibirsk, 1989), Contemp. Math., 131, Part 1, Amer. Math. Soc., Providence, RI, 1992, 29–35
- D. Segal, K. Tent, “Defining $R$ and $G(R)$”, J. Eur. Math. Soc. (JEMS), 25:8 (2023), 3325–3358
- N. Avni, A. Lubotsky, C. Meiri, “First order rigidity of non-uniform higher rank arithmetic groups”, Invent. Math., 217:1 (2019), 219–240
- A. G. Myasnikov, M. Sohrabi, Bi-interpretability with $mathbb{Z}$ and models of the complete elementary theories of $operatorname{SL}_n(O)$, $mathrm T_n(O)$ and $operatorname{GL}_n(O)$, $n geq 3$
- T. Y. Lam, A first course in noncommutative rings, Grad. Texts in Math., 131, Springer-Verlag, New York, 1991, xvi+397 pp.
- T. Y. Lam, Lectures on modules and rings, Grad. Texts in Math., 189, Springer-Verlag, New York, 1998, xxiv+557 pp.
Supplementary files

