Probabilities of small deviations of a critical Galton–Watson process with infinite variance of the number of the direct descendants of particles
- Authors: Vatutin V.A.1, Dyakonova E.E.1, Khusanbaev Y.M.2
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- V. I. Romanovskiy Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
- Issue: Vol 216, No 11 (2025)
- Pages: 62-89
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/351335
- DOI: https://doi.org/10.4213/sm10339
- ID: 351335
Cite item
Abstract
About the authors
Vladimir Alekseevich Vatutin
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Email: vatutin@mi-ras.ru
Scopus Author ID: 6701377350
ResearcherId: Q-4558-2016
Doctor of physico-mathematical sciences, Professor
Elena Evgen'evna Dyakonova
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Email: elena@mi-ras.ru
Scopus Author ID: 6507996691
ResearcherId: Q-6278-2016
Doctor of physico-mathematical sciences, Head Scientist Researcher
Yakubdzhan Mukhamadzhanovich Khusanbaev
V. I. Romanovskiy Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
Email: yakubjank@mail.ru
References
- K. B. Athreya, “Coalescence in the recent past in rapidly growing populations”, Stochastic Process. Appl., 122:11 (2012), 3757–3766
- K. B. Athreya, “Coalescence in critical and subcritical Galton–Watson branching processes”, J. Appl. Probab., 49:3 (2012), 627–638
- K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer, Berlin, 1972, xi+287 pp.
- N. O'Connell, “The genealogy of branching processes and the age of our most recent common ancestor”, Adv. in Appl. Probab., 27:2 (1995), 418–442
- R. Durrett, “The genealogy of critical branching processes”, Stochastic Process. Appl., 8:1 (1978), 101–116
- K. Fleischmann, U. Prehn, “Ein Grenzwertsatz für subkritische Verzweigungsprozesse mit endlich vielen Typen von Teilchen”, Math. Nachr., 64 (1974), 357–362
- K. Fleischmann, R. Siegmund-Schultze, “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79 (1977), 233–241
- S. C. Harris, S. G. G. Johnston, M. I. Roberts, “The coalescent structure of continuous-time Galton–Watson trees”, Ann. Appl. Probab., 30:3 (2020), 1368–1414
- O. A. Hernandez, S. Harris, J. C. Pardo, The coalescent structure of multitype continuous-time Galton–Watson trees
- H. Kesten, P. Ney, F. Spitzer, “The Galton–Watson process with mean one and finite variance”, Теория вероятн. и ее примен., 11:4 (1966), 579–611
- E. Seneta, “The Galton–Watson process with mean one”, J. Appl. Probab., 4:3 (1967), 489–495
- R. S. Slack, “A branching process with mean one and possibly infinite variance”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9:2 (1968), 139–145
Supplementary files


