Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 211, No 12 (2020)

Necessary and sufficient conditions for extending a function to a Schur function

Buslaev V.I.

Abstract

A criterion for a function given by its values (with multiplicities) at a sequence of points in the disc $\mathbb D=\{|z|<1\}$ to extend to a holomorphic function in $\mathbb D$ with modulus at most $1$ is stated and proved. In the case when the function is defined by the values of its derivatives at $z=0$, this coincides with Schur's well-known criterion. Bibliography: 16 titles.
Matematicheskii Sbornik. 2020;211(12):3-48
pages 3-48 views

On Weyl multipliers of the rearranged trigonometric system

Karagulyan G.A.

Abstract

We prove that the condition $\sum_{n=1}^\infty1/(nw(n))<\infty$ is necessary for an increasing sequence of numbers $w(n)$ to be an almost everywhere unconditional convergence Weyl multiplier for the trigonometric system. This property was known long ago for Haar, Walsh, Franklin and some other classical orthogonal systems. The proof of this result is based on a new sharp logarithmic lower bound on $L^2$ for the majorant operator related to the rearranged trigonometric system. Bibliography: 32 titles.
Matematicheskii Sbornik. 2020;211(12):49-82
pages 49-82 views

Renormalized solutions of elliptic equations with variable exponents and general measure data

Kozhevnikova L.M.

Abstract

A class of second-order elliptic equations with variable nonlinearity exponents and the right-hand side in the form of the general Radon measure with finite total variation is considered. The existence of a renormalized solution of the Dirichlet problem is proved as a consequence of stability with respect to the convergence of the right-hand side of the equation. Bibliography: 37 titles.
Matematicheskii Sbornik. 2020;211(12):83-122
pages 83-122 views

Two purity theorems and the Grothendieck-Serre conjecture concerning principal $\mathbf G$-bundles

Panin I.A.

Abstract

The main results of the paper are two purity theorems for reductive group schemes over regular local rings containing a field. Using these two theorems a well-known Grothendieck-Serre conjecture on principal bundles is reduced to the simply-connected case. We point out that the mentioned reduction is one of the major steps in the proof of the conjecture that the author published in another work. Bibliography: 25 titles.
Matematicheskii Sbornik. 2020;211(12):123-142
pages 123-142 views

Proof of a conjecture of Wiegold for nilpotent Lie algebras

Skutin A.A.

Abstract

Let $\mathfrak{g}$ be a nilpotent Lie algebra. By the breadth $b(x)$ of an element $x$ of $\mathfrak{g}$ we mean the number $[\mathfrak{g}:C_{\mathfrak{g}}(x)]$. Vaughan-Lee showed that if the breadth of all elements of the Lie algebra $\mathfrak{g}$ is bounded by a number $n$, then the dimension of the commutator subalgebra of the Lie algebra does not exceed $n(n+1)/2$. We show that if $\dim \mathfrak{g'} > n(n+1)/2$ for some nonnegative $n$, then the Lie algebra $\mathfrak{g}$ is generated by the elements of breadth $>n$, and thus we prove a conjecture due to Wiegold (Question 4.69 in the Kourovka Notebook) in the case of nilpotent Lie algebras. Bibliography: 4 titles.
Matematicheskii Sbornik. 2020;211(12):143-148
pages 143-148 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».