Abnormal extremals in the sub-Riemannian problem for a general model of a robot with a trailer
- Authors: Ardentov A.A.1, Artemova E.M.2
-
Affiliations:
- Ailamazyan Program Systems Institute of Russian Academy of Sciences
- Ural Mathematical Center
- Issue: Vol 214, No 10 (2023)
- Pages: 3-24
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/140514
- DOI: https://doi.org/10.4213/sm9829
- ID: 140514
Cite item
Abstract
A symmetric mathematical model of a wheeled robot with a trailer is considered for various types of coupling between the robot and the trailer. It is shown that for fixed coupling parameters and fixed initial position of the robot with trailer there are two symmetric abnormal extremals. In motion along these trajectories the robot and the trailer traverse normal extremal trajectories for the sub-Riemannian problem on the group of motions of the plane; the coupling point always draws an inflectional elastica or a straight line.
About the authors
Andrei Andreevich Ardentov
Ailamazyan Program Systems Institute of Russian Academy of Sciences
Author for correspondence.
Email: aaa@pereslavl.ru
Candidate of technical sciences, no status
Elizaveta Markovna Artemova
Ural Mathematical Center
Email: liz-artemova2014@yandex.ru
References
- R. Montgomery, “Abnormal optimal controls and open problems in nonholonomic steering”, IFAC Proc. Vol., 25:13 (1992), 121–126
- D. Barilari, U. Boscain, E. Le Donne, M. Sigalotti, “Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions”, J. Dyn. Control Syst., 23:3 (2017), 547–575
- В. Н. Берестовский, И. А. Зубарева, “Анормальные экстремали левоинвариантных субфинслеровых квазиметрик на четырехмерных группах Ли”, Сиб. матем. журн., 62:3 (2021), 477–497
- F. Pelletier, L. Bouche, “Abnormality of trajectory in sub-Riemannian structure”, Geometry in nonlinear control and differential inclusions (Warsaw, 1993), Banach Center Publ., 32, Polish Acad. Sci., Inst. Math., Warsaw, 1995, 301–317
- H. J. Sussmann, “A cornucopia of four-dimensional abnormal sub-Riemannian minimizers”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser Verlag, Basel, 1996, 341–364
- Ю. Л. Сачков, Е. Ф. Сачкова, “Структура анормальных экстремалей в субримановой задаче с вектором роста $(2,3,5,8)$”, Матем. сб., 211:10 (2020), 112–138
- B. Bonnard, E. Trelat, “On the role of abnormal minimizers in sub-Riemannian geometry”, Ann. Fac. Sci. Toulouse Math. (6), 10:3 (2001), 405–491
- A. A. Agrachev, A. V. Sarychev, “Abnormal sub-Riemannian geodesics: Morse index and rigidity”, Ann. Inst. H. Poincare C Anal. Non Lineaire, 13:6 (1996), 635–690
- A. A. Agrachev, A. V. Sarychev, “Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity”, ESAIM Control Optim. Calc. Var., 4 (1999), 377–403
- A. Agrachev, J.-P. Gauthier, “On the subanalyticity of Carnot–Caratheodory distances”, Ann. Inst. H. Poincare C Anal. Non Lineaire, 18:3 (2001), 359–382
- Ю. Л. Сачков, А. Ю. Попов, “Субриманова сфера Энгеля”, Докл. РАН. Матем., информ., проц. упр., 500 (2021), 97–101
- A. Ardentov, E. Hakavuori, “Cut time in the sub-Riemannian problem on the Cartan group”, ESAIM Control Optim. Calc. Var., 28 (2022), 12, 19 pp.
- A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448
- R. S. Strichartz, “Sub-Riemannian geometry”, J. Differential Geom., 24:2 (1986), 221–263
- R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp.
- R. Monti, “The regularity problem for sub-Riemannian geodesics”, Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., 5, Springer, Cham, 2014, 313–332
- E. Hakavuori, E. Le Donne, “Non-minimality of corners in subriemannian geometry”, Invent. Math., 206:3 (2016), 693–704
- А. А. Аграчев, Ю. Л. Сачков, Геометрическая теория управления, Физматлит, М., 2005, 392 с.
- M. Chyba, S. Sekhavat, “Time optimal paths for a mobile robot with one trailer”, Proceedings 1999 IEEE/RSJ International conference on intelligent robots and systems. Human and environment friendly robots with high intelligence and emotional quotients, v. 3, IEEE, 1999, 1669–1674
- H. Chitsaz, “On time-optimal trajectories for a car-like robot with one trailer”, 2013 Proceedings of the conference on control and its applications (CT), SIAM, 2013, 114–120
- I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399
- Yu. L. Sachkov, “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:4 (2010), 1018–1039
- Yu. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 293–321
- A. A. Ardentov, Yu. L. Sachkov, “Cut time in sub-Riemannian problem on Engel group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988
- A. A. Ardentov, “Controlling of a mobile robot with a trailer and its nilpotent approximation”, Regul. Chaotic Dyn., 21:7-8 (2016), 775–791
- А. А. Ардентов, А. П. Маштаков, “Управление мобильным роботом с прицепом на основе нильпотентной аппроксимации”, Автомат. и телемех., 2021, № 1, 95–118
- А. В. Борисов, А. А. Килин, И. С. Мамаев, “О проблеме Адамара–Гамеля и динамике колесных экипажей”, Нелинейная динам., 12:1 (2016), 145–163
- F. Lamiraux, S. Sekhavat, J.-P. Laumond, “Motion planning and control for Hilare pulling a trailer”, IEEE Trans. Robot. Autom., 15:4 (1999), 640–652
- П. К. Рашевский, “О соединимости любых двух точек вполне неголономного пространства допустимой линией”, Уч. зап. Моск. гос. пед. ин-та им. K. Либкнехта. Сер. физ.-матем. наук, 3:2 (1938), 83–94
- A. Ardentov, G. Bor, E. Le Donne, R. Montgomery, Yu. Sachkov, “Bicycle paths, elasticae and sub-Riemannian geometry”, Nonlinearity, 34:7 (2021), 4661–4683
- Л. С. Понтрягин, В. Г. Болтянский, Р. В. Гамкрелидзе, Е. Ф. Мищенко, Математическая теория оптимальных процессов, Физматгиз, М., 1961, 391 с.
- A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2020, xviii+745 pp.
- Е. Янке, Ф. Эмде, Ф. Леш, Специальные функции. Формулы, графики, таблицы, 2-е стер. изд., ред. Л. И. Седов, Наука, М., 1968, 344 с.
Supplementary files
