$L^2$-аппроксимация резольвенты в усреднении эллиптических операторов четвертого порядка

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучается усреднение дивергентного эллиптического оператора $A_\varepsilon$ четвертого порядка с быстро осциллирующими $\varepsilon$-периодическими коэффициентами, $\varepsilon$ – малый параметр. Усредненный оператор $A_0$ того же типа, но с постоянными коэффициентами. Для разности резольвент $(A_\varepsilon+1)^{-1}$ и $(A_0+1)^{-1}$ получена оценка в операторной $(L^2\to L^2)$-норме порядка $\varepsilon^2$. Для доказательства операторной оценки применяется метод сдвига, предложенный в 2005 г. В. В. Жиковым.Библиография: 25 названий.

Об авторах

Светлана Евгеньевна Пастухова

МИРЭА — Российский технологический университет

Email: pas-se@yandex.ru
доктор физико-математических наук, профессор

Список литературы

  1. A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North Holland Publishing Co., Amsterdam–New York, 1978, xxiv+700 pp.
  2. Э. Санчес-Паленсия, Неоднородные среды и теория колебаний, Мир, М., 1984, 472 с.
  3. Н. С. Бахвалов, Г. П. Панасенко, Осреднение процессов в периодических средах, Наука, М., 1984, 352 с.
  4. В. В. Жиков, С. М. Козлов, О. А. Олейник, Усреднение дифференциальных операторов, Физматлит, М., 1993, 464 с.
  5. В. В. Жиков, С. М. Козлов, О. А. Олейник, Ха Тьен Нгоан, “Усреднение и $G$-сходимость дифференциальных операторов”, УМН, 34:5(209) (1979), 65–133
  6. С. Е. Пастухова, “Операторные оценки усреднения для эллиптических уравнений четвертого порядка”, Алгебра и анализ, 28:2 (2016), 204–226
  7. М. Ш. Бирман, Т. А. Суслина, “Периодические дифференциальные операторы второго порядка. Пороговые свойства и усреднения”, Алгебра и анализ, 15:5 (2003), 1–108
  8. В. В. Жиков, “Об операторных оценках в теории усреднения”, Докл. РАН, 403:3 (2005), 305–308
  9. В. В. Жиков, С. Е. Пастухова, “Об операторных оценках в теории усреднения”, УМН, 71:3(429) (2016), 27–122
  10. V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524
  11. S. E. Pastukhova, “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95:7 (2016), 1449–1466
  12. Н. А. Вениаминов, “Усреднение периодических дифференциальных операторов высокого порядка”, Алгебра и анализ, 22:5 (2010), 69–103
  13. А. А. Кукушкин, Т. А. Суслина, “Усреднение эллиптических операторов высокого порядка с периодическими коэффициентами”, Алгебра и анализ, 28:1 (2016), 89–149
  14. В. В. Жиков, “О спектральном методе в теории усреднения”, Дифференциальные уравнения и динамические системы, Сборник статей, Тр. МИАН, 250, Наука, МАИК «Наука/Интерпериодика», М., 2005, 95–104
  15. М. Ш. Бирман, Т. А. Суслина, “Усреднение периодических эллиптических дифференциальных операторов с учетом корректора”, Алгебра и анализ, 17:6 (2005), 1–104
  16. С. Е. Пастухова, “Приближения резольвенты для несамосопряженного оператора диффузии с быстро осциллирующими коэффициентами”, Матем. заметки, 94:1 (2013), 130–150
  17. Н. Н. Сеник, “Об усреднении несамосопряженных локально периодических эллиптических операторов”, Функц. анализ и его прил., 51:2 (2017), 92–96
  18. N. N. Senik, “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898
  19. S. E. Pastukhova, “On resolvent approximations of elliptic differential operators with locally periodic coefficients”, Lobachevskii J. Math., 41:5 (2020), 818–838
  20. С. Е. Пастухова, “О $L^2$-оценках усреднения для эллиптических операторов”, Проблемы матем. анализа, 101, Тамара Рожковская, Новосибирск, 2019, 117–129
  21. С. Е. Пастухова, “$L^2$-аппроксимации резольвенты эллиптического оператора в перфорированном пространстве”, Труды Крымской осенней математической школы-симпозиума, СМФН, 66, № 2, РУДН, М., 2020, 314–334
  22. S. E. Pastukhova, On resolvent approximations of elleptic differential operators with periodic coefficients, 2020
  23. С. Е. Пастухова, “Об оценках усреднения для сингулярно возмущенных операторов”, Проблемы матем. анализа, 106, Тамара Рожковская, Новосибирск, 2020, 135–154
  24. С. Е. Пастухова, “$L^2$-аппроксимация резольвенты в усреднении эллиптических операторов высокого порядка”, Проблемы матем. анализа, 107, Тамара Рожковская, Новосибирск, 2020, 113–132
  25. В. А. Слоущ, Т. А. Суслина, “Усреднение эллиптического оператора четвертого порядка с периодическими коэффициентами при учете корректоров”, Функц. анализ и его прил., 54:3 (2020), 94–99

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Пастухова С.Е., 2021

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).