Differencial'nye uravneniya

The journal publishes articles and reviews, chronicles of scientific life, anniversary articles and obituaries.

The journal is aimed at mathematicians, scientists and engineers who use differential equations in their research, at teachers, graduate students and students of natural science and technical faculties of universities and universities.

The journal is peer-reviewed and is included in the List of the Higher Attestation Commission of Russia for publishing works of applicants for academic degrees, as well as in the RISC system.

The journal was founded in 1965.

 

ISSN (print)0374-0641

Media registration certificate№ 0110211 от 08.02.1993

Founder: Department of Informatics, Computer Science and Automation of the Russian Academy of Sciences, Russian Academy of Sciences (RAS)

Editor-in-Chief: Sadovnichii Victor Antonovich, Member of RAS, Doctor Phys.-Math.  Sciences, Rector of Lomonosov Moscow State University

Number of issues per year: 12

IndexationRISC, Higher Attestation Commission list, RISC core, RSCI, White list (1st level)

Current Issue

Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 61, No 1 (2025)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

ЛЮДИ НАУКИ

K VOS'MIDESYaTIPYaTILETIYu NIKOLAYa ALEKSEEVIChA IZOBOVA
- -.
Differencial'nye uravneniya. 2025;61(1):3-4
pages 3-4 views

PARTIAL DERIVATIVE EQUATIONS

MODEL PROBLEM IN A STRIP FOR THE HYPERBOLIC DIFFERENTIAL-DIFFERENCE EQUATION
Zaitseva N.V.
Abstract
The paper investigates the question of the existence of a classical solution to the initial value problem with incomplete initial data on the boundary of the strip for a hyperbolic differential-difference equation. The equation contains a superposition of a differential operator and a translation operator with respect to a spatial variable that varies along the entire real axis. Using the Gelfand–Shilov operational scheme, a solution to the problem was obtained in explicit form.
Differencial'nye uravneniya. 2025;61(1):5-12
pages 5-12 views
INSTABILITY AND STABILIZATION OF SOLUTIONS OF A STOCHASTIC MODEL OF VISCOELASTIC FLUID DYNAMICS
Kitaeva O.G.
Abstract
The instability and stability of solutions of the stochastic system describing the flow of a viscoelastic liquid are investigated. It is shown that for certain values of the parameters included in the equations of the system, the existence of unstable and stable invariant spaces. For unstable case, the stabilization problem is solved based on the feedback principle.
Differencial'nye uravneniya. 2025;61(1):13-21
pages 13-21 views
EXISTENCE OF SOLUTIONS OF THE BOUNDARY VALUE PROBLEM FOR THE DIFFUSION EQUATION WITH PIECEWISE CONSTANT ARGUMENTS
Muminov M.I., Radjabov T.A.
Abstract
In this paper the boundary value problem (BVP) for diffusion equation with piecewise constant arguments is studied. By using the separation of variables method, the considered BVP is reduced to the investigation of the existence conditions of solutions of initial value problems for differential equation with piecewise constant arguments. Existence conditions of infinitely many solutions or emptiness for considered differential equation are established and explicit formula for these solutions are obtained. Several examples are given to illustrate the obtained results.
Differencial'nye uravneniya. 2025;61(1):22-34
pages 22-34 views
ON FRONT MOTION IN THE REACTION–DIFFUSION–ADVECTION PROBLEM WITH KPZ-NONLINEARITY
Orlov A.O.
Abstract
We obtain an asymptotic approximation to a moving inner layer (front) solution of an initial– boundary value problem for a singularly perturbed parabolic reaction–diffusion–advection equation with KPZnonlinearity. An asymptotic approximation for the velocity of the front is found. To prove the existence and uniqueness of a solution the asymptotic method of differential inequalities is used.
Differencial'nye uravneniya. 2025;61(1):35-49
pages 35-49 views
DIRICHLET PROBLEM FOR A TWO-DIMENSIONAL WAVE EQUATION IN A CYLINDRICAL DOMAIN
Sabitov K.B.
Abstract
In this work, the first boundary value problem is studied for a two-dimensional wave equation in a cylindrical domain. A uniqueness criterion has been established. The solution is constructed as the sum of an orthogonal series. When justifying the convergence of a series, the problem of small denominators from two natural arguments arose for the first time. An estimate for separation from zero with the corresponding asymptotics was established, which made it possible to prove the convergence of the series in the class of regular solutions and the stability of the solution.
Differencial'nye uravneniya. 2025;61(1):50-67
pages 50-67 views
BLOW-UP OF THE SOLUTION AND GLOBAL SOLVABILITY OF THE CAUCHY PROBLEM FOR THE EQUATION OF VIBRATIONS OF A HOLLOW ROD
Umarov K.G.
Abstract
For a nonlinear partial differential equation of Sobolev type, generalizing the equation of oscillations of a hollow flexible rod, the Cauchy problem is studied in the space of continuous functions defined on the entire numerical axis and for which there are limits at infinity. The conditions for the existence of a global classical solution and the blow-up of the solution to the Cauchy problem on a finite time interval are considered.
Differencial'nye uravneniya. 2025;61(1):68-83
pages 68-83 views

INTEGRAL EQUATIONS

ON THE SOLVABILITY OF A SYSTEM OF MULTIDIMENSIONAL INTEGRAL EQUATIONS WITH CONCAVE NONLINEARITIES
Khachatryan K.A., Petrosyan H.S.
Abstract
The work is devoted to the study of questions of existence and uniqueness of a continuous bounded and positive solution to one system of nonlinear multidimensional integral equations. The scalar analogue of the indicated system of integral equations, with different representations of the corresponding matrix kernel and nonlinearities, has important applied significance in a number of areas of physics and biology. This article proposes a special iterative approach for constructing a positive continuous and bounded solution to the system under study. It is possible to prove that the corresponding iterations uniformly converge to a continuous solution of the specified system. Using some a priori estimates for strictly concave functions, we also prove the uniqueness of the solution in a fairly wide subclass of continuous bounded and coordinately nonnegative vector functions. In the case when the integral of the matrix kernel has a unit spectral radius, it is proved that in a certain subclass of continuous bounded and coordinate-wise non-negative vector functions, this system has only a trivial solution, which is an eigenvector of the kernel integral matrix.
Differencial'nye uravneniya. 2025;61(1):84-98
pages 84-98 views

CONTROL THEORY

STABLE SOLUTION OF PROBLEMS OF TRACKING AND DYNAMICAL RECONSTRUCTION UNDER MEASURING PHASE COORDINATES AT DISCRETE TIME MOMENTS
Maksimov V.I.
Abstract
The problem of dynamic reconstruction of input actions in a system of ordinary differential equations and the problem of tracking a trajectory of a system by some trajectory of another one influenced by an unknown disturbance are under consideration. An input action is assumed to be an unbounded function, namely, an element of the space of square integrable functions. Two solving algorithms, which are stable with respect to informational noises and computational errors and oriented to program realization, are designed. Upper estimates of their convergence rates are established. The algorithms are based on constructions from feedback control theory. They operate under conditions of (inaccurate) measuring the phase states of the given systems at discrete times.
Differencial'nye uravneniya. 2025;61(1):99-115
pages 99-115 views
ON THE PROBLEM OF PURSUING A GROUP OF COORDINATED EVADERS IN A GAME WITH FRACTIONAL DERIVATIVES
Petrov N.N., Machtakova A.I.
Abstract
In a finite-dimensional Euclidean space, the problem of pursuing of a group of evaders by a group of pursuers is considered, described by a linear non-stationary system of differential equations with fractional Caputo derivatives. Sets of admissible players’ controls — compacts, terminal sets — origin of coordinates. Sufficient conditions have been obtained for the capture of at least one evader and all evaders under the condition that the evaders use the same control. In the study, the method of matrix and scalar resolving functions is used as a basic one. It is shown that differential games described by equations with fractional derivatives have properties that are different from those of differential games described by ordinary differential equations.
Differencial'nye uravneniya. 2025;61(1):116-132
pages 116-132 views

BRIEF MESSAGES

BASS–GURA FORMULA FOR LINEAR SYSTEM WITH DYNAMIC OUTPUT FEEDBACK
Perepelkin E.A.
Abstract
In this paper we solve the problem of assigning the desired characteristic polynomial of a linear stationary dynamic system with one input and output dynamic feedback in the form of a first-order dynamic compensator. Necessary and sufficient conditions for the existence of the solution of the problem are considered. An explicit formula for the compensator parameters, analogous to the Bass–Gura formula for a state feedback system, is derived.
Differencial'nye uravneniya. 2025;61(1):133-138
pages 133-138 views
OPTIMAL TRAJECTORIES IN THE GRUSHIN 𝛼-PLANE
Sachkov Y.L., Sachkova E.F.
Abstract
For the Grushin 𝛼-plane, optimal trajectories, cutting time, and cutting set are described.
Differencial'nye uravneniya. 2025;61(1):139-144
pages 139-144 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».