CHRISTOFFEL–DARBOUX FORMULA FOR POLYNOMIAL EIGENFUNCTIONS OF SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

Cover Page

Cite item

Full Text

Abstract

Using recurrence relations between any three consecutive polynomial eigenfunctions of second-order linear differential equations, the Christoffel–Darboux formulae for the system of polynomial eigenfunctions of these equations are derived

About the authors

V. E. Kruglov

Mechnikov Odesa National University

Email: viktorkruglov935@gmail.com

References

  1. Круглов, В.Е. Построение полиномиальных собственных функций линейного дифференциального уравнения второго порядка / В.Е. Круглов // Дифференц. уравнения. — 2023. — Т. 59, № 9. — С. 1172–1180.
  2. Никифоров, А.Ф. Специальные функции математической физики : учеб. пособие для вузов / А.Ф. Никифоров, В.Е. Уваров. — 2-е изд., перераб. и доп. — М. : Наука, 1984. — 344 с.
  3. Суетин, П.К. Классические ортогональные многочлены / П.К. Суетин. — М. : Наука, 1976. — 327 с.
  4. Kruglov, V.E., Construction of polynomial eigenfunctions of a second-order linear differential equation, Differ. Equat., 2023, vol. 59, no. 9, pp. 1166–1174.
  5. Nikiforov, A.F. and Uvarov, V.E., Spetsial’nye funktsii matematicheskoi fiziki (Special Functions of Mathematical Physics), Moscow: Nauka, 1984.
  6. Suetin, P.K., Klassicheskie ortogonal’nye mnogochleny (Classical Orthogonal Polynomials), Moscow: Nauka, 1976.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).